In this paper, we propose different architectures for language independent machine transliteration which is extremely important for natural language processing (NLP) applications. Though a number of statistical models for transliteration have already been proposed in the past few decades, we proposed some neural network based deep learning architectures for the transliteration of named entities. Our transliteration systems adapt two different neural machine translation (NMT) frameworks: recurrent neural network and convolutional sequence to sequence based NMT. It is shown that our method provides quite satisfactory results when it comes to multi lingual machine transliteration. Our submitted runs are an ensemble of different transliteration systems for all the language pairs. In the NEWS 2018 Shared Task on Transliteration, our method achieves top performance for the En-Pe and Pe-En language pairs and comparable results for other cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.