SPECT imaging of the dopamine transporter (DAT) is used for diagnosis and monitoring progression of Parkinson’s Disease (PD), and differentiation of PD from other neurological disorders. The diagnosis is based on the DAT binding in the caudate and putamen structures in the striatum. We previously proposed a relatively inexpensive method to improve the detection and quantification of these structures for dual-head SPECT by replacing one of the fan-beam collimators with a specially designed multi-pinhole (MPH) collimator. In this work, we developed a realistic model of the proposed MPH system using the GATE simulation package and verified the geometry with an analytic simulator. Point source projections from these simulations closely matched confirming the accuracy of the pinhole geometries. The reconstruction of a hot-rod phantom showed that 4.8 mm resolution is achievable. The reconstructions of the XCAT brain phantom showed clear separation of the putamen and caudate, which is expected to improve the quantification of DAT imaging and PD diagnosis. Using this GATE model, point spread functions modeling physical factors will be generated for use in reconstruction. Also, further improvements in geometry are being investigated to increase the sensitivity of this base system while maintaining a target spatial resolution of 4.5–5 mm.
This study investigated whether current state‐of‐the‐art deep reasoning network analysis on psychometry‐driven diffusion tractography connectome can accurately predict expressive and receptive language scores in a cohort of young children with persistent language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural network combined with a relational network (dilated CNN + RN) was trained to reason the nonlinear relationship between “dilated CNN features of language network” and “clinically acquired language score”. Three‐fold cross‐validation was then used to compare the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN‐predicted and actual language scores. The dilated CNN + RN outperformed other methods providing the most significant correlation between predicted and actual scores (i.e., Pearson's R/p‐value: 1.00/<.001 and .99/<.001 for expressive and receptive language scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The strength of the relationship suggests elevated probability in the prediction of both expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically, sparse connectivity not only within the right precentral gyrus but also involving the right caudate had the strongest relationship between deficit in both the expressive and receptive language domains. Subsequent subgroup analyses inferred that the effectiveness of the dilated CNN + RN‐based prediction of language score(s) was independent of time interval (between MRI and language assessment) and age of MRI, suggesting that the dilated CNN + RN using psychometry‐driven diffusion tractography connectome may be useful for prediction of the presence of language disorder, and possibly provide a better understanding of the neurological mechanisms of language deficits in young children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.