Optical penetration inside human skin is constrained by the wavelength dependent scattering and absorption losses by tissue microstructure and chromophores. This computational study investigates whether the signature of hematocrit variation from plexus i.e., the first skin layer having very small blood volume percentage distributed in capillary vessels, is retained by the detected photoacoustic response. The in-silico skin phantom is irradiated by a light source equivalent to a small footprint and low power (below 5 W) continuous wave LASER diode. As the low fluence can be compensated by exploiting strong absorption by targeted chromophores (hemoglobin molecules), an irradiation of wavelength 405 nm has been used to generate detectable pressure from capillary blood vessels of plexus. Optical energy deposition inside the tissue has been modelled using Monte Carlo technique and the pressure wave is computed using k-wave. It is found that with the increase in hematocrit from 10% to 50%, photoacoustic amplitude monotonically increases and gets almost doubled. The increment is about 30% in the range of hematocrit of physiological interest (from 30% to 50%). The variation follows a quadratic relationship for the entire hematocrit range. This photoacoustic signature of hematocrit variation has further been validated against minimum detectable pressure (800 Pa). This numerical model is expected to be an important basis to realize the idea of low cost small footprint in-vivo photoacoustic hematocrit measurement device.
Patients under hemolytic condition need continuous monitoring of lysis as depletion of Red Blood Cells (RBC) and the presence of antioxidant free hemoglobin (Hb) in excess amount due to hemolysis lead to severe deterioration of their health. Out of many modalities, Photoacoustics (PA) offers real time information noninvasively from deep lying blood vessels since Hb is the strongest chromophore in mammalian blood and the PA response of blood varies with the amount of Hb present. During hemolysis, total Hb content in blood however remains unchanged, thus, questions the use of PA in hemolysis detection. In this report, a hypothesis that the amplitude of the PA signal would not change with the amount of lysis is framed and tested by applying osmotic shock to the RBCs in hypotonic environment and the PA response is recorded over time using a low cost NIR based PA system. The experimental outcome indicates that PA amplitude falls off as lysis progresses in course of time consequently rejecting the hypothesis. The decaying PA response also carries the signature of RBC swelling during the early phase of lysis. The PA measurement can detect hemolysis as low as 1.7%. These findings further advocate transforming this NIR-PA system into a portable, noninvasive patient care device to monitor hemolysis in-vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.