Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel ‘histone-like transcription factor’ belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Rhynchosia sublobata, a wild relative of pigeonpea, possesses defensive proteinase/protease inhibitors (PIs). Characterization of trypsin specific PIs (RsPI) separated from seeds by column chromatography using 2-D gel electrophoresis and Edman degradation method identified R. sublobata possessed both Bowman-Birk isoinhibitors (RsBBI) and Kunitz isoinhibitors (RsKI). A quick method was developed to separate RsBBI and RsKI from RsPI based on their differential solubility in TCA and acetate buffer. N-terminus sequencing of RsBBI and RsKI by MALDI-ISD ascertained the presence of Bowman Birk and Kunitz type isoinhibitors in R. sublobata. RsBBI (9216 Da) and RsKI (19,412 Da) exhibited self-association pattern as revealed by western blotting with anti-BBI antibody and MALDI-TOF peptide mass fingerprint analysis, respectively. RsBBI and RsKI varied significantly in their biochemical, biophysical and insecticidal properties. RsBBI inhibited the activity of trypsin (Ki = 128.5 ± 4.5 nM) and chymotrypsin (Ki = 807.8 ± 23.7 nM) while RsKI (Ki = 172.0 ± 9.2 nM) inhibited the activity of trypsin alone, by non-competitive mode. The trypsin inhibitor (TI) and chymotrypsin inhibitor (CI) activities of RsBBI were stable up to 100°C. But, RsBBI completely lost its TI and CI activities on reduction with 3 mM DTT. Conversely, RsKI lost its TI activity on heating at 100°C and retained > 60% of its TI activity in presence of 3 mM DTT. CD spectroscopic studies on RsBBI and RsKI showed their secondary structural elements in the following order: random coils > β-sheets/β-turns > α-helix. However, RsKI showed reversible denaturation midpoint (Tm) of 75°C. Further, the significant inhibitory activity of RsBBI (IC 50 = 24 ng) and RsKI (IC 50 = 59 ng) against trypsin-like gut proteases of Achaea janata (AjGPs) and Helicoverpa armigera (HaGPs) suggest them as potential biomolecules in the management of A. janata and H. armigera, respectively. vegetative organs during biotic and abiotic stresses (Jamal et al., 2013; Yamchi et al., 2017). They also act as pseudosubstrates of proteases and stabilize them during desiccation. The PIs are rapidly degraded during seed germination to release essential amino acids and they reappear in cotyledons to protect them from invading pests and pathogens. They also take part in programmed cell death in plants. Bowman-Birk
Crude proteinase inhibitors (CPIs) extracted from the seeds of Rhynchosia sublobata, a wild relative of pigeon pea showed pronounced inhibitory activity on the larval gut trypsin-like proteases of lepidopteran insect pest - Achaea janata. Consequently, a full-length cDNA of Bowman-Birk inhibitor gene (RsBBI1) was cloned from the immature seeds of R. sublobata. It contained an ORF of 360 bp encoding a 119-amino acid polypeptide (13.3 kDa) chain with an N-terminus signal sequence comprising of 22 amino acids. The amino acid sequence and phylogenetic analysis together revealed that RsBBI1 exhibited a close relation with BBIs from soybean and Phaseolus spp. A cDNA sequence corresponding to RsBBI1 mature protein (89 amino acid stretch) was expressed in E. coli. The recombinant rRsBBI1 protein with a molecular mass of 9.97 kDa was purified using trypsin affinity chromatography. The purified rRsBBI1 exhibited non-competitive mode of inhibition of both bovine trypsin (Ki of 358 ± 11 nM) and chymotrypsin (Ki of 446 ± 9 nM). Its inhibitory activity against these proteases was stable at high temperatures (>95 °C) and a wide pH range but sensitive to reduction with dithiothreitol (DTT), indicating the importance of disulphide bridges in exhibiting its activity. Also, rRsBBI1 showed significant inhibitory activity (IC = 70 ng) on A. janata larval gut trypsin-like proteases (AjGPs). Conversely, it showed <1% inhibitory activity (IC = 8 μg) on H. armigera larval gut trypsin-like proteases (HaGPs) than it has against AjGPs. Besides, in vivo feeding experiments clearly indicated the deleterious effects of rRsBBI1 on larval growth and development in A. janata which suggests it can be further exploited for such properties.
The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.