A nonlinear chaos generator scheme derived from a mechanical triple pendulum physical system is proposed here. The chaotic behavior of the proposed generator is validated against various standardized tests, such as the Lyapunov exponents test, bifurcation diagrams, sensitivity to parametric and to initial values, ergodicity, key space and sensitivity, histogram, correlation, NPCR and UACI, collision test, etc. and compared with existing contemporary methods. The generated chaotic map is utilized to develop various cryptography applications, such as PRNG and symmetric key encryption schemes, which are realized on an FPGA and an ASIC. Chaos-based PRNG is validated successfully using N IST − SP 800 benchmarks. The proposed encryption scheme illustrates its usage in low power, high throughput applications, where the power consumption, resource utilization, and throughput are 1.785×, 1.825×, and 2.396× better than other known contemporary chaos-based encryption methods. The average power and area of its ASIC implementation at 180-nm technology are 61.8836 mW and 0.20374 mm 2 at 250 MHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.