Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites.
The morphology of thin films at the polymer-to-insulator interface is of great importance for OFET applications. In order to find a relation between the thickness dependence of structural order and the electrical parameters in low molecular weight (M w ∼ 2.5 kDa) poly(3-hexylthiophene) (P3HT), we have performed grazing-incidence X-ray diffraction and field effect mobility measurements. The samples were prepared from solutions with different concentrations by spin-coating mainly onto HMDS-pretreated Si/SiO 2 substrates, resulting in film thicknesses that vary between 10 and 200 nm. The X-ray diffraction curves display Bragg peaks of nanocrystallites diluted into an amorphous matrix where the orientational distribution of the crystallites changes significantly as a function of film thickness. The orientation of nanocrystals was found to be random for the thickest films. Reducing the film thickness, we found an increase in the alignment of the stacking direction of molecules along the surface normal. At same time the mean crystal size along the film normal decreases less than the decrease of film thickness. This is interpreted by a preferential pinning of nanocrystals at the film-to-insulator interface when the crystal size becomes in the order of the film thickness, i.e., below 25 nm. The model of pinning effect is supported by temperature-resolved X-ray measurements performed between room temperature and melting temperature. For films thicker than 25 nm the phase transition appears rather continuously with temperature, but it becomes sharp for thinner films. In contrast to X-ray measurements the field effect mobility is found to be constant within the whole investigated range. Our findings give evidence that the charge transport in low molecular weight P3HT is dominated by the ultrathin layer stabilized at the film-to-insulator interface. Despite the very uniform orientation of the crystallites within this layer, the field effect mobility remains low for all thicknesses. This is attributed to the presence of amorphous regions between highly crystalline domains, which ultimately limits the charge transport in the layer plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.