N-methyl-D-aspartate receptors (NMDAR) are downregulated in schizophrenia possibly through microRNAs (miRNAs) that are differentially expressed in this condition. We screened the miRNAs that are altered in schizophrenia against the targets, Grin2A and Grin2B subunits of NMDAR using bioinformatic tools. Among the predicted miRNAs some interacted with the 3`UTR sequences of Grin2A (miR-296, miR-148b, miR-129-2, miR-137) and Grin2B (miR-296, miR-148b, miR-129-2, miR-223) in dual luciferase assays. This was supported by downregulation of the GluN2B protein in primary hippocampal neurons upon overexpressing Grin2B targeting miRNAs. In two models of schizophrenia- pharmacological MK-801 model and neurodevelopmental methylazoxymethanol acetate (MAM) model which showed cognitive deficits - protein levels of GluN2A and GluN2B were downregulated but their transcript levels were upregulated. MiR-296-3p, miR-148b-5p and miR-137 levels showed upregulation in both models which could have interacted with Grin2A/Grin2B transcripts resulting in translational arrest. In MAM model, reciprocal changes in the expression of the 3p and 5p forms of miR-148b and miR-137 were observed. Expression of neuregulin 1 (NRG1), BDNF and CaMKIIα, genes implicated in schizophrenia, were also altered in these models. This is the first report of downregulation of GluN2A and GluN2B by miR-296, miR-148b and miR-129-2. Mining miRNAs regulating NMDA receptors might give insights into the pathophysiology of this disorder, providing avenues in therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.