INTRODUCTION AND SCOPE OF REVIEW been shown to cause damage to DNA, RNA, protein, and lipids. Active oxygen species are produced as an ines-Oxidative stress can be functionally defined as an excess capable by-product of normal aerobic metabolism, and their of prooxidants in the cell. Active oxygen molecules have production is further enhanced by exposure to certain environments or by dietary or disease conditions. Oxygen toxicity results wh~en the-degree of oxidative stress exceeds the * Corresponding author. capacity of the cell defense systems. Oxidative stress is 561
Escherichia coil double mutants (sodA sodB) completely lacking superoxide dismutase (SOD) have greatly enhanced mutation rates during aerobic growth. Single mutants lacking manganese SOD (MnSOD) but possessing iron SOD (FeSOD) have a smaller increase, and single mutants lacking FeSOD but possessing MnSOD do not show such an increase. The enhancement of mutagenesis is completely dependent on the presence of oxygen, and treatments that increase the flux of superoxide radicals produce even higher levels of mutagenesis. The presence of a plasmid overproducing either form of SOD reduces the level of mutagenesis to that of wild type, showing that the 02-dependent enhancement results from a lack of SOD. The enhancement of mutagenesis is RecA-independent, and a complete lack of SOD does not induce the SOS response during aerobic growth. However, the enhanced mutagenesis in aerobically grown sodA sodB mutants is largely dependent on functional exonuclease Ill, suggesting that the increased flux of superoxide radicals results in DNA lesions that can be acted on by this enzyme, leading to mutations.
Microarrays are a new technology used to study global gene expression and to decipher biological pathways. In the current study, microarrays were used to examine gene expression patterns associated with cisplatin-mediated nephrotoxicity. Sprague-Dawley rats received either single or seven daily ip doses of cisplatin (0.5 or 1 mg/kg/day) or the inactive isomer transplatin (1 or 3 mg/kg/day). Histopathological evaluation revealed renal proximal tubular necrosis in animals that received cisplatin for 7 days, but no hepatotoxic findings. Microarray analyses were performed using rat specific arrays containing 250 toxicity-related genes. Prominent gene expression changes were observed only in the kidneys of rats that received cisplatin for 7 days. Mechanistically, the gene expression pattern elicited by cisplatin (e.g., Bax upward arrow and SMP-30 downward arrow) suggested the occurrence of apoptosis and the perturbation of intracellular calcium homeostasis. The induction of multidrug resistance genes (MDR1 upward arrow, P-gp upward arrow) and tissue remodeling proteins (clusterin upward arrow, IGFBP-1 upward arrow, and TIMP-1 upward arrow) indicated the development of cisplatin resistance and tissue regeneration. Select gene expression changes were further confirmed by TaqMan analyses. Gene expression changes were not observed in the liver following cisplatin administration. In contrast to these in vivo findings, studies using NRK-52E kidney epithelial cells and clone-9 liver cells suggested that liver cells were more sensitive to cisplatin treatment. The discrepancies between the in vivo and in vitro results suggest that caution should be taken when extrapolating data from in vivo to in vitro systems. Nonetheless, the current study elucidates the biochemical pathways involved in cisplatin toxicity and demonstrates the utility of microarrays in toxicological studies.
Oxidative stress is strongly implicated in a number of diseases, such as rheumatoid arthritis, inflammatory bowel disorders, and atherosclerosis, and its emerging as one of the most important causative agents of mutagenesis, tumorigenesis, and aging. Recent progress on the genetics and molecular biology of the cellular responses to oxidative stress, primarily in Escherichia coli and Salmonella typhimurium, is summarized. Bacteria respond to oxidative stress by invoking two distinct stress responses, the peroxide stimulon and the superoxide stimulon, depending on whether the stress is mediated by peroxides or the superoxide anion. The two stimulons each contain a set of more than 30 genes. The expression of a subset of genes in each stimulon is under the control of a positive regulatory element; these genes constitute the OxyR and SoxRS regulons. The schemes of regulation of the two regulons by their respective regulators are reviewed in detail, and the overlaps of these regulons with other stress responses such as the heat shock and SOS responses are discussed. The products of Oxy-R- and SoxRS-regulated genes, such as catalases and superoxide dismutases, are involved in the prevention of oxidative damage, whereas others, such as endonuclease IV, play a role in the repair of oxidative damage. The potential roles of these and other gene products in the defense against oxidative damage in DNA, proteins, and membranes are discussed in detail. A brief discussion of the similarities and differences between oxidative stress responses in bacteria and eukaryotic organisms concludes this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.