While gradual typing has proven itself attractive to programmers, many systems have avoided sound gradual typing due to the run time overhead of enforcement. In the context of sound gradual typing, both anecdotal and systematic evidence has suggested that run time costs are quite high, and often unacceptable, casting doubt on the viability of soundness as an approach. We show that these overheads are not fundamental, and that with appropriate improvements, just-intime compilers can greatly reduce the overhead of sound gradual typing. Our study takes benchmarks published in a recent paper on gradual typing performance in Typed Racket (Takikawa et al., POPL 2016) and evaluates them using an experimental tracing JIT compiler for Racket, called Pycket. On typical benchmarks, Pycket is able to eliminate more than 90% of the gradual typing overhead. While our current results are not the final word in optimizing gradual typing, we show that the situation is not dire, and where more work is needed. Pycket's performance comes from several sources, which we detail and measure individually. First, we apply a sophisticated tracing JIT compiler and optimizer, automatically generated in Pycket using the RPython framework originally created for PyPy. Second, we focus our optimization efforts on the challenges posed by run time checks, implemented in Racket by chaperones and impersonators. We introduce representation improvements, including a novel use of hidden classes to optimize these data structures, and measure the performance implications of each optimization.
Disturbance has many effects on ecological communities, and it is often suggested that disturbance can affect species diversity by altering competitive outcomes. However, disturbance regimes have many distinct aspects that may act, and interact, to influence species diversity. While there are many theoretical models of disturbance‐prone communities, few have specifically documented how interactions between different aspects of a disturbance regime change competitive outcomes. Here, we present a model of two plant species subject to disturbance which we then use to examine species coexistence over varying levels of two aspects of disturbance: frequency, and spatial extent (i.e., area disturbed). We show that the competitive outcome is affected differently by changes in each aspect and that the effect of disturbance frequency on species coexistence depends strongly on the spatial extent of the disturbance, and vice versa. We classify the nature of these interactions between disturbance frequency and extent on the basis of the shape of the resulting coexistence regions in a frequency–extent parameter plane. Our results illustrate that different types of interaction can result from differences in life‐history traits that control species‐specific sensitivity to frequency and extent of disturbance. Thus, our analysis shows that the various aspects of disturbance must be carefully considered in concert with the life‐history traits of the community members in order to assess the consequences of disturbance.
We present Pycket, a high-performance tracing JIT compiler for Racket. Pycket supports a wide variety of the sophisticated features in Racket such as contracts, continuations, classes, structures, dynamic binding, and more. On average, over a standard suite of benchmarks, Pycket outperforms existing compilers, both Racket's JIT and other highly-optimizing Scheme compilers. Further, Pycket provides much better performance for proxies than existing systems, dramatically reducing the overhead of contracts and gradual typing. We validate this claim with performance evaluation on multiple existing benchmark suites.The Pycket implementation is of independent interest as an application of the RPython meta-tracing framework (originally created for PyPy), which automatically generates tracing JIT compilers from interpreters. Prior work on meta-tracing focuses on bytecode interpreters, whereas Pycket is a high-level interpreter based on the CEK abstract machine and operates directly on abstract syntax trees. Pycket supports proper tail calls and first-class continuations. In the setting of a functional language, where recursion and higher-order functions are more prevalent than explicit loops, the most significant performance challenge for a tracing JIT is identifying which control flows constitute a loop-we discuss two strategies for identifying loops and measure their impact.
We present Pycket, a high-performance tracing JIT compiler for Racket. Pycket supports a wide variety of the sophisticated features in Racket such as contracts, continuations, classes, structures, dynamic binding, and more. On average, over a standard suite of benchmarks, Pycket outperforms existing compilers, both Racket's JIT and other highly-optimizing Scheme compilers. Further, Pycket provides much better performance for proxies than existing systems, dramatically reducing the overhead of contracts and gradual typing. We validate this claim with performance evaluation on multiple existing benchmark suites.The Pycket implementation is of independent interest as an application of the RPython meta-tracing framework (originally created for PyPy), which automatically generates tracing JIT compilers from interpreters. Prior work on meta-tracing focuses on bytecode interpreters, whereas Pycket is a high-level interpreter based on the CEK abstract machine and operates directly on abstract syntax trees. Pycket supports proper tail calls and first-class continuations. In the setting of a functional language, where recursion and higher-order functions are more prevalent than explicit loops, the most significant performance challenge for a tracing JIT is identifying which control flows constitute a loop-we discuss two strategies for identifying loops and measure their impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.