Virtual Machines (VMs) with Just-In-Time (JIT) compilers are traditionally thought to execute programs in two phases: the initial warmup phase determines which parts of a program would most benefit from dynamic compilation, before JIT compiling those parts into machine code; subsequently the program is said to be at a steady state of peak performance. Measurement methodologies almost always discard data collected during the warmup phase such that reported measurements focus entirely on peak performance. We introduce a fully automated statistical approach, based on changepoint analysis, which allows us to determine if a program has reached a steady state and, if so, whether that represents peak performance or not. Using this, we show that even when run in the most controlled of circumstances, small, deterministic, widely studied microbenchmarks often fail to reach a steady state of peak performance on a variety of common VMs. Repeating our experiment on 3 different machines, we found that at most 43.5% of ⟨VM, benchmark⟩ pairs consistently reach a steady state of peak performance.
While gradual typing has proven itself attractive to programmers, many systems have avoided sound gradual typing due to the run time overhead of enforcement. In the context of sound gradual typing, both anecdotal and systematic evidence has suggested that run time costs are quite high, and often unacceptable, casting doubt on the viability of soundness as an approach. We show that these overheads are not fundamental, and that with appropriate improvements, just-intime compilers can greatly reduce the overhead of sound gradual typing. Our study takes benchmarks published in a recent paper on gradual typing performance in Typed Racket (Takikawa et al., POPL 2016) and evaluates them using an experimental tracing JIT compiler for Racket, called Pycket. On typical benchmarks, Pycket is able to eliminate more than 90% of the gradual typing overhead. While our current results are not the final word in optimizing gradual typing, we show that the situation is not dire, and where more work is needed. Pycket's performance comes from several sources, which we detail and measure individually. First, we apply a sophisticated tracing JIT compiler and optimizer, automatically generated in Pycket using the RPython framework originally created for PyPy. Second, we focus our optimization efforts on the challenges posed by run time checks, implemented in Racket by chaperones and impersonators. We introduce representation improvements, including a novel use of hidden classes to optimize these data structures, and measure the performance implications of each optimization.
We read with attention the comment by Zwart on The ecological impact of highperformance computing in astrophysics [1]. We fully agree with its take-home message: scientists should be mindful of their carbon footprint. One of the proposed solutions is to avoid the Python programming language. We advocate that this would be counterproductive and that scientific programs written in Python can be efficient and energy friendly. We argue that advancement of compiler technology, human factors and education are much more important than choice of language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.