The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice – we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10−9 millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.
Το αντικείμενο της παρούσας Διδακτορικής Διατριβής είναι η ανάπτυξη και ο χαρακτηρισμός προηγμένων υλικών για εφαρμογές σε νανοδιατάξεις. Στα πλαίσια αυτής, επικεντρωθήκαμε στην ανάπτυξη και μελέτη μαγνητικών και ημιαγωγικών λεπτών υμενίων που βασίζονται σε οξείδια παραδοσιακών μετάλλων και ημιαγωγών. Ο μαγνητικός και οπτικός χαρακτηρισμός των υλικών αυτών υπό τη μορφή της νανοδομής του λεπτού υμενίου, αποκαλύπτουν νέες ιδιότητες με εξαιρετικά μεγάλο τεχνολογικό ενδιαφέρον. Πιο συγκεκριμένα, έγινε καταρχήν ανάπτυξη πολυστρωματικών μαγνητικών υμενίων Ni/NiO, μονοστρωματικών ημιαγωγικών υμενίων Cu2O, CuO και NiO, όπως επίσης και μονοστρωματικών άμορφων μονωτικών υμενίων SiOx με ή και χωρίς ενσωματωμένες κβαντικές τελείες Si. Για κάθε σειρά υμενίων από τις κατηγορίες αυτές, έγινε μελέτη των μαγνητικών ή/και των οπτικών τους ιδιοτήτων. Τα υμένια Ni/NiO αναπτύχθηκαν σε διαφορετικά υποστρώματα με τη χρήση μιας μόνο κεφαλής magnetron sputtering και της μεθόδου της φυσικής οξείδωσης. Η διαστρωμάτωση του υλικού και η επαναληψιμότητα της μεθόδου αποδείχθηκαν εξαιρετικής ποιότητας. Για υμένια Ni/NiO με διαφορετικό πάχος στρώματος Ni έγινε εκτεταμένη μελέτη της εξάρτησης της μαγνήτισης και της ανισοτροπίας από τη θερμοκρασία. Βρέθηκε ότι τα υμένια με λεπτά στρώματα Ni εμφανίζουν τάση για κάθετη μαγνητική ανισοτροπία, η οποία προέρχεται από την υπολογίσιμη θετική ανισοτροπία επιφανείας που επιδεικνύουν αυτά. Τα ημιαγωγικά υμένια οξειδίων του Cu και του Νi αναπτύχθηκαν μετά από οξείδωση υμενίων των αντίστοιχων μεταβατικών μετάλλων. Τα άμορφα μονωτικά υμένια SiOx αναπτύχθηκαν με τη τεχνική της “reactive” ιοντοβολής. Στη συνέχεια, μέρος αυτών οξειδώθηκε πλήρως μετά από θέρμανση σε θερμοκρασία 950 οC και σε περιβάλλον αέρα, ενώ κάποια άλλα υποβλήθηκαν σε θερμική αποσύνθεση μετά από θέρμανση σε συνθήκες κενού στους 1000 οC. Με τη διαδικασία της θερμικής αποσύνθεσης, όπως αποδεικνύουν και οι εικόνες ηλεκτρονικής μικροσκοπίας, σχηματίζονται νανοκρύσταλλοι Si ενσωματωμένοι σε άμορφη μήτρα οξειδίου του Si. Για τα υμένια των οξειδίων του Cu και του Ni μελετήθηκαν με τη χρήση της φασματοσκοπίας UV-VIS τα φαινόμενα κβαντικού περιορισμού που παρουσιάζουν αυτά. Βρέθηκε ότι σε κάθε περίπτωση εμφανίζεται μετατόπιση της ακμής απορρόφησης προς μεγαλύτερες ενέργειες, καθώς το πάχος του υμενίου μειώνεται και γίνεται συγκρίσιμο με την εξιτονική ακτίνα Bohr του αντίστοιχου υλικού. Τα υμένια SiOx βρέθηκε ότι μετά από τη διαδικασία της θερμικής τους αποσύνθεσης παρουσιάζουν φωτοφωταύγεια, η οποία προέρχεται από τις εξιτονικές επανασυνδέσεις στις κβαντικές τελείες Si που εμπεριέχονται σ’ αυτά. Από την εργασία στα πλαίσια αυτής της Διατριβής, διαπιστώνουμε ότι μπορούμε να μεταβάλλουμε τις ιδιότητες παραδοσιακών υλικών, όπως είναι για παράδειγμα τα μέταλλα, οι κλασσικοί ημιαγωγοί και τα οξείδια αυτών, όταν αυτά αναπτύσσονται υπό τη μορφή νανοδομών. Οι νανοδομές αυτές μπορεί να εμφανίζουν εξαιρετικό ενδιαφέρον για εφαρμογές σε νανοδιατάξεις με καινούργιες αλλά κι εντελώς ελεγχόμενες ιδιότητες.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.