Artificial spin ice systems have been proposed as a playground for the study of monopole-like magnetic excitations, similar to those observed in pyrochlore spin ice materials. Currents of magnetic monopole excitations have been observed, demonstrating the possibility for the realization of magnetic-charge-based circuitry. Artificial spin ice systems that support thermal fluctuations can serve as an ideal setting for observing dynamical effects such as monopole propagation and as a potential medium for magnetricity investigations. Here, we report on the transition from a frozen to a dynamic state in artificial spin ice with a square lattice. Magnetic imaging is used to determine the magnetic state of the islands in thermal equilibrium. The temperature-induced onset of magnetic fluctuations and excitation populations are shown to depend on the lattice spacing and related interaction strength between islands. The excitations are described by Boltzmann distributions with their factors in the frozen state relating to the blocking temperatures of the array. Our results provide insight into the design of thermal artificial spin ice arrays where the magnetic charge density and response to external fields can be studied in thermal equilibrium.
Artificial spin ice arrays of micromagnetic islands are a means of engineering additional energy scales and frustration into magnetic materials. Here we demonstrate a magnetic phase transition in an artificial square spin ice and use the symmetry of the lattice to verify the presence of excitations far below the ordering temperature. We do this by measuring the temperature-dependent magnetization in different principal directions and comparing it with simulations of idealized statistical mechanical models. Our results confirm a dynamical premelting of the artificial spin ice structure at a temperature well below the intrinsic ordering temperature of the island material. We thus create a spin ice array that has the real thermal dynamics of artificial spins over an extended temperature range.Geometric frustration is observed in many physical systems. A textbook example is the frustration of proton interactions in water ice, giving rise to proton disorder, as revealed by the pioneering experimental work of Giauque and Stout [1] and the theoretical interpretation by Pauling [2]. Frustration in antiferromagnets analogous to the ice model was predicted
The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order [1][2][3][4][5][6] , collective low-energy dynamics 7,8 and emergent magnetic properties 5,9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane 11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.Lithographic techniques can be used to fabricate magnetic nanoarrays, in which the interaction between the elements can be chosen by, for example, the distance between the islands. This approach has been used in a number of previous works, addressing both the order and dynamics of magnetic nanostructures [1][2][3][4][5][6][7][8]12 . In the specific case of square artificial spin ice (SASI), this approach has even enabled tailoring of the thermal dynamics and relaxation 8,[13][14][15] , as well as experimental realizations 9 of the degenerate square-ice model 16 . The distance and thereby the coupling strength for nearest and nextnearest neighbours are different in SASI (d 1 ≠ d 2 ; see Fig. 1), resulting in the loss of degeneracy. As a consequence, the ice-rule-obeying vertices, with two islands pointing in-two islands pointing out, are split into two groups (T I and T II ) with different energies (E I < E II ). One way to remedy this shortcoming is to shift parts of the lattice in the third dimension 9,17,18 . An alternative way to modify the energy landscape is to introduce an interaction modifier, as illustrated in Fig. 1b. In these modified SASI (mSASI) arrays, all islands have the same distance, or gap G, to the interaction modifier. While a height offset might seem the obvious choice for manipulating the coupling strengths between the islands, the use of interaction modifiers at the vertices of artificial spin-ice structures is not only lithographically much easier to achieve, but also opens up completely new avenues for tailoring their energy landscapes. Instead of having a system consisting of only one type of island, we use two subsystems with widely different shape anisotropies a...
This Perspective surveys the state-of-the-art and future prospects of science and technology employing the nanoconfined light (nanophotonics and nanoplasmonics) in combination with magnetism. We denote this field broadly as nanoscale magnetophotonics. We include a general introduction to the field and describe the emerging magneto-optical effects in magnetoplasmonic and magnetophotonic nanostructures supporting localized and propagating plasmons. Special attention is given to magnetoplasmonic crystals with transverse magnetization and the associated nanophotonic non-reciprocal effects, and to magneto-optical effects in periodic arrays of nanostructures. We give also an overview of the applications of these systems in biological and chemical sensing, as well as in light polarization and phase control. We further review the area of nonlinear magnetophotonics, the semiconductor spin-plasmonics, and the general principles and applications of opto-magnetism and nano-optical ultrafast control of magnetism and spintronics.
This is a submitted version of a paper published in Journal of Physics: Condensed Matter.Citation for the published paper: Hostert, C et al "Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films" Journal of Physics: Condensed Matter, 2011, Vol. 23
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.