Building on 2 previous studies (B. R. Ekstrand, 1967; B. R. Ekstrand, M. J. Sullivan, D. F. Parker, & J. N. West, 1971), the authors present 2 experiments that were aimed at characterizing the role of retroactive interference in sleep-associated declarative memory consolidation. Using an A-B, A-C paradigm with lists of word pairs in Experiment 1, the authors showed that sleep provides recovery from retroactive interference induced at encoding, whereas no such recovery was seen in several wake control conditions. Noninterfering word-pair lists were used in Experiment 2 (A-B, C-D). Sleeping after learning, in comparison with waking after learning, enhanced retention of both lists to a similar extent when encoding was less intense because of less list repetition and briefer word-pair presentations. With intense encoding, sleep-associated improvements were not seen for either list. In combination, the results indicate that the benefit of sleep for declarative memory consolidation is greater for weaker associations, regardless of whether weak associations result from retroactive interference or poor encoding.
Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on an acontextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of memories, with the different sleep stages affecting different types of memory. In the present study, we used the process-dissociation procedure to compare the effects of sleep on estimates of explicit (recollection) and implicit (familiarity) memory formation on a word-list discrimination task. Subjects studied two lists of words before a 3-h retention interval of sleep or wakefulness, and recognition was tested afterward. The retention intervals were positioned either in the early night when sleep is dominated by slow-wave sleep (SWS), or in the late night, when sleep is dominated by REM sleep. Sleep enhanced explicit recognition memory, as compared with wakefulness (P < 0.05), whereas familiarity was not affected by sleep. Moreover, explicit recognition was particularly enhanced after sleep in the early-night retention interval, and especially when the words were presented with the same contextual features as during learning, i.e., in the same font (P < 0.05). The data indicate that in a task that allows separating the contribution of explicit and implicit memory, sleep particularly supports explicit memory formation. The mechanism of this effect appears to be linked to SWS.
There is evidence that sleep supports the enhancement of implicit as well as explicit memories (i.e., two memory systems that during learning normally appear to act together). Here, employing a serial reaction time task (SRTT) paradigm, we examined the question whether sleep can provide explicit knowledge on an implicitly acquired skill. At learning, young healthy subjects (n = 20) were first trained on the SRTT. Then, implicit knowledge was assessed on two test blocks, in which grammatically incorrect target positions were occasionally interspersed by the difference in reaction times between grammatically correct and incorrect target positions. To assess explicit sequence knowledge, thereafter subjects performed on a generation task in which they were explicitly instructed to predict the sequential target positions. In half the subjects, learning took place before a 9-hour retention interval filled with nocturnal sleep (sleep group), in the other half, the retention interval covered a 9-hour period of daytime wakefulness (wake group). At subsequent retesting, both testing on the generation task and the SRTT test blocks was repeated. At learning before the retention interval, subjects displayed significant implicit sequence knowledge which was comparable for the sleep and wake groups. Moreover, both groups did not display any explicit sequence knowledge as indicated by a prediction performance not differing from chance on the generation task. However, at retesting, there was a distinct gain in explicit knowledge in the subjects who had slept in the retention interval, whereas generation task performance in the wake group remained at chance level. SRTT performance in the test blocks at retesting did not indicate any further gain in skill (i.e., unchanged reaction time differences between grammatically correct and incorrect target positions) independently of whether subjects had slept or remained awake after learning. Our results indicate a selective enhancement of explicit memory formation during sleep. Because before sleep subjects only had implicit knowledge on the sequence of target transitions, these data point to an interaction between implicit and explicit memory systems during sleep-dependent off-line learning.
BackgroundTemporal sequence represents the main principle underlying episodic memory. The storage of temporal sequence information is thought to involve hippocampus-dependent memory systems, preserving temporal structure possibly via chaining of sequence elements in heteroassociative networks. Converging evidence indicates that sleep enhances the consolidation of recently acquired representations in the hippocampus-dependent declarative memory system. Yet, it is unknown if this consolidation process comprises strengthening of the temporal sequence structure of the representation as well, or is restricted to sequence elements independent of their temporal order. To address this issue we tested the influence of sleep on the strength of forward and backward associations in word-triplets.Methodology/Principal FindingsSubjects learned a list of 32 triplets of unrelated words, presented successively (A-B-C) in the center of a screen, and either slept normally or stayed awake in the subsequent night. After two days, retrieval was assessed for the triplets sequentially either in a forward direction (cueing with A and B and asking for B and C, respectively) or in a backward direction (cueing with C and B and asking for B and A, respectively). Memory was better for forward than backward associations (p<0.01). Sleep did not affect backward associations, but enhanced forward associations, specifically for the first (AB) transitions (p<0.01), which were generally more difficult to retrieve than the second transitions.Conclusions/SignificanceOur data demonstrate that consolidation during sleep strengthens the original temporal sequence structure in memory, presumably as a result of a replay of new representations during sleep in forward direction. Our finding suggests that the temporally directed replay of memory during sleep, apart from strengthening those traces, could be the key mechanism that explains how temporal order is integrated and maintained in the trace of an episodic memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.