Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa. We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4. RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.
Background The poultry red mite (PRM) Dermanyssus gallinae is the most common ectoparasite on poultry and causes high economic losses in poultry farming worldwide. Pyrethroid acaricides have been widely used for its control and, consequently, pyrethroid resistance has arisen. In this study we aim to investigate the occurrence of resistance and study the geographical distribution of pyrethroid resistance mutations across PRM populations in Europe. Results Full dose–response contact bioassays revealed very high levels of resistance against several pyrethroids (α‐cypermethrin, fluvalinate, and cyfluthrin) in two PRM populations from Greece, compared to a susceptible reference strain. Resistance was associated with mutations in the gene encoding the target site of pyrethroids, the voltage‐gated sodium channel (VGSC). Mutations, M918L and L925V in domain IIS4‐S5 and F1534L in domain IIIS6, were found at positions known to play a role in pyrethroid resistance in other arthropod species. Subsequent screening by sequencing VGSC gene fragments IIS4‐S5 and IIIS6 revealed the presence and distribution of these mutations in many European populations. In some populations, we identified additional or different mutations including M918V/T, L925M, T929I, I936F, and F1538L. The latter mutation is a possible alternative for F1538I that has been previously associated with pyrethroid resistance in other Acari species. Conclusion We report very high levels of pyrethroid resistance in PRM populations from Greece, as well as the identification and geographical distribution of 10 pyrethroid resistance mutations in PRM populations across Europe. Our results draw attention to the need for an evidence‐based implementation of PRM control, taking acaricide resistance management into consideration. © 2019 Society of Chemical Industry
The honey bee ectoparasite Varroa destructor is considered the major threat to apiculture, as untreated colonies of Apis mellifera usually collapse within a few years. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate and flumethrin. Due to the intensive use of these products, resistance is now commonplace in many beekeeping regions across the world. In the present study, the occurrence of amino acid substitutions at residue L925 of the voltage-gate sodium channel-the pyrethroid target site-was studied in Varroa populations collected throughout Flanders, Belgium. Dose-response bioassays supported the involvement of the frequently observed L925V substitution in flumethrin resistance, resulting in a 12.64-fold increase of the LC 50 in a Varroa population mostly consisting of homozygous 925 V/V mites. With the presence of L925 substitutions in about four out of 10 screened apiaries, the use of pyrethroid-based varroacides in Flanders, including the recently released PolyVar® Yellow, should be carefully considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.