Species richness is commonly thought to increase with habitat diversity. However, a recent theoretical model aiming to unify niche and island biogeography theories predicted a hump-shaped relationship between richness and habitat diversity. Given the contradiction between model results and previous knowledge, we examine whether the relationship between species richness and habitat diversity is consistently monotonically increasing and under which circumstances, if at all, such relationships could be hump shaped. We review the empirical evidence about the shape of such relationships and show that species richness on islands usually increases with habitat diversity and that it never decreases. We also critically examine the assumptions of the theoretical model and modify them to incorporate a less restrictive definition of niche width. The modified assumptions lead to simulations that better capture real patterns, using either simple parameters or observed distributions of niche breadth. Further work is needed to incorporate ecological interactions and metacommunity dynamics if the aim is to merge niche and island biogeography theories in a realistic modeling framework.
Aim To test whether congeneric species are significantly associated with one another in space, either positively or negatively. Also, to provide a framework for a causal investigation of co-occurrence patterns by a parallel comparison of interactions in geographical and ecological data matrices.Location For the analysis of congeneric species' co-occurrences we used 30 matrices covering a wide range of taxa and geographical areas, while for the causal investigation we used the distribution of 50 terrestrial isopod species on 20 islands and 264 sampling stations in the central Aegean archipelago, as well as a number of ecological variables for each sampling station. MethodsWe developed a software program ( ) that incorporates the speciesby-species approach to co-occurrence analysis using EcoSim's output of prior null model analysis of co-occurrence. We describe this program in detail, and use it to investigate one of the most common assembly rules, namely, the decreased levels of co-occurrence among congeneric species pairs. For the causal analysis, we proceed likewise, cross-checking the results from the geographical and the ecological matrices. There is only one possible combination of results that can support claims for direct competition among species. ResultsWe do not get any strong evidence for widespread competition among congeneric species, while most communities investigated do not show significant patterns of species associations. The causal analysis suggests that the principal factors behind terrestrial isopod species associations are of historical nature. Some exceptional cases are also discussed.Main conclusions Presence/absence data for a variety of taxa do not support the assembly rule that congeneric species are under more intense competition compared to less related species. Also, these same data do not suggest strong interactions among species pairs, regardless of taxonomic status. When significant species associations can be seen in such matrices, they mainly reflect the effects of history or of habitat requirements.
Aim To investigate the species-area relationship (SAR) of plants on very small islands, to examine the effect of other factors on species richness, and to check for a possible Small Island Effect (SIE).Location The study used data on the floral composition of 86 very small islands (all < 0.050 km 2 ) of the Aegean archipelago (Greece).Methods We used standard techniques for linear and nonlinear regression in order to check several models of the SAR, and stepwise multiple regression to check for the effects of factors other than area on species richness ('habitat diversity', elevation, and distance from nearest large island), as well as the performance of the Choros model. We also checked for the SAR of certain taxonomic and ecological plant groups that are of special importance in eastern Mediterranean islands, such as halophytes, therophytes, Leguminosae and Gramineae. We used one-way anova to check for differences in richness between grazed and non-grazed islands, and we explored possible effects of nesting seabirds on the islands' flora. ResultsArea explained a small percentage of total species richness variance in all cases. The linearized power model of the SAR provided the best fit for the total species list and several subgroups of species, while the semi-log model provided better fits for grazed islands, grasses and therophytes. None of the nonlinear models explained more variance. The slope of the SAR was very high, mainly due to the contribution of non-grazed islands. No significant SIE could be detected. The Choros model explained more variance than all SARs, although a large amount of variance of species richness still remained unexplained. Elevation was found to be the only important factor, other than area, to influence species richness. Habitat diversity did not seem important, although there were serious methodological problems in properly defining it, especially for plants. Grazing was an important factor influencing the flora of small islands. Grazed islands were richer than non-grazed, but the response of their species richness to area was particularly low, indicating decreased floral heterogeneity among islands. We did not detect any important effects of the presence of nesting seabird colonies.Main conclusions Species richness on small islands may behave idiosyncratically, but this does not always lead to a typical SIE. Plants of Aegean islets conform to the classical Arrhenius model of the SAR, a result mainly due to the contribution of non-grazed islands. At the same time, the factors examined explain a small portion of total variance in species richness, indicating the possible contribution of other, non-standard factors, or even of stochastic effects. The proper definition of habitat diversity as pertaining to the taxon examined in each case is a recurrent problem in such studies. Nevertheless, the combined effect of area and a proxy for environmental heterogeneity is once again superior to area alone in explaining species richness.
We provide a review and synthesis of key findings in phylogeographic research on terrestrial animals in the Aegean archipelago (Greece) and surrounding regions (Greek mainland, southern Balkans and Asia Minor). A critical review of more than 100 phylogeographic articles on 76 animal genera (30 invertebrates and 46 vertebrates) that have been published so far for the region leads to the recognition of three types of distribution patterns: old ‘colonizers’ diversified in the Aegean before the formation of the mid‐Aegean Trench (MAT – i.e. before 9 Mya), post‐MAT colonizers that arrived to the Aegean in late Miocene and Pliocene and new colonizers that inhabited the region in the Pleistocene or even the Holocene. Several problems, mainly regarding the use of calibration points and/or molecular clock rates for clade chronology, have been identified in many analyses. Despite the large amount of phylogeographic work concerning the Aegean and surrounding regions, many groups remain unstudied (especially invertebrates, micro‐organisms, fungi and plants), and many issues still remain unresolved. The relative roles of extinction, speciation, dispersal and vicariance, as well as the effects of adaptive and non‐adaptive components of diversification, need further analyses with modern tools that can provide deeper insights. A more detailed reconstruction of the palaeogeography of the region is also of prime importance. The critical views presented herein may prove useful also for the evaluation of similar work in other regions.
Aim To explore the causal factors leading to a significant Small Island Effect (SIE), that is, the absence of the commonly found species–area relationships below an island size, on the terrestrial isopod communities from a large number of islands. Location Ninety islands of the Aegean Sea (Greece). Methods The detection of a significant SIE is assessed through the application of all three methods available in the literature. Species are divided into generalists and specialists. We tested if the minimum area and the area range of each species’ occurrences differ between generalists and specialists. Next, we searched for differences in the ratios of specialists to generalists above and below the SIE threshold, and tested their cumulative ratios when islands are arranged according to increasing area, altitude or habitat diversity in order to identify the threshold where they become statistically indistinguishable from the ratio of the total set of islands. Results Our results indicate a strong effect of habitat availability on the SIE. Communities of islands within the SIE range, host a higher percentage of generalists. An analysis of the specific habitat requirements shows that, for isopods, the crucial factor is the lack of habitats related to inland waters from small islands. Main conclusions The distribution of habitats on islands of different size is of major importance for the occurrence of a SIE. The relative representation of specialist and generalist species on islands of different size plays an important role in shaping SIE‐related patterns. Conservation efforts should pay special attention on freshwater habitats, especially on small Aegean islands. Identifying the causal factors of SIE, combined with a thorough knowledge of the ecological requirements of species can offer insights into identifying habitat types and groups of species that are more vulnerable to alterations of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.