Diabetes mellitus (DM) is a significant common metabolic disorder seen all over the world. In 2020, according to the International Diabetes Federation (IDF), out of 463 million people who have diabetes all over the world, 77 million belong to India.As per the statistical prediction, the affected numbers are probably expected to rise to 642 million by 2040. The commercially available anti-diabetic drugs in the market include metformin, sulphonyl urea, meglitinides, miglitol, acarbose, biguanides, and thiazolidinediones cause side effects like hypoglycaemia, dizziness, liver cell injury, digestive discomfort, neurological defects, etc. Hence, bioactive organosulphur based functional ligands are chosen in this study to arrive at a newer drug for DM. In this work, in silico analysis of organosulphur molecular descriptors like physicochemical properties, solubility, drug score, and toxicity predictions are evaluated using OSIRIS and Toxtree freeware. The essential parameters for discovering drugs for biopharmaceutical formulations viz the solubility of drugs and toxicity have been calculated. The protein target Dipeptidyl peptidase DPP4 (PID: 2RIP) was docked against energy minimised sulphur compounds using Hex 6.3. The results indicate that the drug likeliness of the molecule 4, that is, N-[(3,3-dimethyl piperidin-2-yl) methyl]-4-ethyl sulphonyl aniline is active with decreasing binding energy score (À212.24 Kcal mol À1 ) with no toxicity and also few sulphur compounds are active against diabetes compared to standard drug metformin (À158.33 Kcal mol À1 ). The best drug-like ligand N-[(3,3-dimethyl piperidin-2-yl) methyl]-4-ethyl sulphonyl aniline, was docked using commercial Maestro Schrodinger software to predict the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.