SUMMARYThe Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-b-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-b-D-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.
BackgroundCrown gall (CG) (Agrobacterium tumefaciens) and the root lesion nematodes (RLNs) (Pratylenchus vulnus) are major challenges faced by the California walnut industry, reducing productivity and increasing the cost of establishing and maintaining orchards. Current nematode control strategies include nematicides, crop rotation, and tolerant cultivars, but these methods have limits. Developing genetic resistance through novel approaches like RNA interference (RNAi) can address these problems. RNAi-mediated silencing of CG disease in walnut (Juglans regia L.) has been achieved previously. We sought to place both CG and nematode resistance into a single walnut rootstock genotype using co-transformation to stack the resistance genes. A. tumefaciens, carrying self-complimentary iaaM and ipt transgenes, and Agrobacterium rhizogenes, carrying a self-complimentary Pv010 gene from P. vulnus, were used as co-transformation vectors. RolABC genes were introduced by the resident T-DNA in the A. rhizogenes Ri-plasmid used as a vector for plant transformation. Pv010 and Pv194 (transgenic control) genes were also transferred separately using A. tumefaciens. To test for resistance, transformed walnut roots were challenged with P. vulnus and microshoots were challenged with a virulent strain of A. tumefaciens.ResultsCombining the two bacterial strains at a 1:1 rather than 1:3 ratio increased the co-transformation efficiency. Although complete immunity to nematode infection was not observed, transgenic lines yielded up to 79% fewer nematodes per root following in vitro co-culture than untransformed controls. Transgenic line 33-3-1 exhibited complete crown gall control and 32% fewer nematodes. The transgenic plants had thicker, longer roots than untransformed controls possibly due to insertion of rolABC genes. When the Pv010 gene was present in roots with or without rolABC genes there was partial or complete control of RLNs. Transformation using only one vector showed 100% control in some lines.ConclusionsCG and nematode resistance gene stacking controlled CG and RLNs simultaneously in walnuts. Silencing genes encoding iaaM, ipt, and Pv010 decrease CG formation and RLNs populations in walnut. Beneficial plant genotype and phenotype changes are caused by co-transformation using A. tumefaciens and A. rhizogenes strains. Viable resistance against root lesion nematodes in walnut plants may be accomplished in the future using this gene stacking technology.
Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant-pathogen interaction, the focus of this study. We identified 25 SWEET genes in the walnut genome and distinguished each by its individual gene structure and pattern of expression in different walnut tissues. Their chromosomal locations, cis-acting motifs within their 5 regulatory elements, and phylogenetic relationship patterns provided the first comprehensive analysis of the SWEET gene family of sugar transporters in walnut. This family is divided into four clades, the analysis of which suggests duplication and expansion of the SWEET gene family in Juglans regia. In addition, tissue-specific gene expression signatures suggest diverse possible functions for JrSWEET genes. Although these are commonly used by pathogens to harness sugar products from their plant hosts, little was known about their role during Xanthomonas arboricola pv. juglandis (Xaj) infection. We monitored the expression profiles of the JrSWEET genes in different tissues of "Chandler" walnuts when challenged with pathogen Xaj417 and concluded that SWEET-mediated sugar translocation from the host is not a trigger for walnut blight disease development. This may be directly related to the absence of type III secretion system-dependent transcription activator-like effectors (TALEs) in Xaj417, which suggests different strategies are employed by this pathogen to promote susceptibility to this major aboveground disease of walnuts.
An in vitro grafting method was developed for examining gene translocation from rootstock to scion in walnut. Results showed the DsRED gene itself was not translocated but expressed mRNA was. Grafting is widely used in plants, especially in fruit and nut crops. Selected rootstocks can control scion growth and physiological traits, including shortening of the juvenile phase and controlling tree size. Rootstocks also can provide improved soil adaptation and pathogen resistance. Development of genetically modified (GM) fruit crops has progressed recently, but commercial cultivation is still limited due to the time required for evaluation and issues with deregulation. In this study, we evaluated the stability of DsRED marker gene expression in in vitro walnut shoots and examined translocation of the gene and its mRNA from transformed rootstock to wild-type scion. Results show that DsRED was expressed uniformly in transformed tissue-cultured shoots. When used as in vitro rootstocks, these had good graft affinity with wild-type control scion. PCR and qRT-PCR analysis showed that the DsRED gene was not transported from rootstock to scion, but the transcribed mRNA was translocated. This result provides further evidence of gene signal transport from rootstock to scion in fruit and nut crops.
An improved scorable marker was developed for somatic embryo transformation. This method is more reliable than GFP and provides more efficient embryo selection than β-glucuronidase assays (GUS, MUG). Reporter genes are widely used to select transformed cells and tissues. Fluorescent proteins have become an integral part of live-cell imaging research over the past 10 years. DsRED is an ideal reporter for avoiding plant chlorophyll autofluorescence and for double labeling in combination with other scorable markers. In this study, we transformed walnut somatic embryos with a construct containing the DsRED-expressing binary vector pKGW-RR to assess the effect of this red fluorescent protein visual reporter on both embryos and regenerated plants. Results showed that DsRED expression was apparent with maximum brightness at 7-10 days after initiation. Fourteen of twenty-four surviving somatic embryos were bright red. These E0 embryos generated 25 wholly fluorescent E1 embryos and 43 wholly fluorescent E2 embryos at 2 weeks intervals. The germination percentage of DsRED-positive embryos was greater than 80% and gave rise to 45 fluorescent transgenic walnut plants. The regenerated transgenic plants expressed DsRED in all tissues examined including transverse sections of vegetative organs. The percentage of transformed plants that developed roots (48.3%) was similar to control shoots (53%). For transformation of walnut somatic embryos, the DsRED-based reporter system is more stable and reliable than green fluorescent protein (GFP) and, since it is a directly read and non-destructive assay, it provides a more efficient means of monitoring transformation than β-glucuronidase (GUS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.