Voice-triggered smart assistants often rely on detection of a triggerphrase before they start listening for the user request. Mitigation of false triggers is an important aspect of building a privacy-centric non-intrusive smart assistant. In this paper, we address the task of false trigger mitigation (FTM) using a novel approach based on analyzing automatic speech recognition (ASR) lattices using graph neural networks (GNN). The proposed approach uses the fact that decoding lattice of a falsely triggered audio exhibits uncertainties in terms of many alternative paths and unexpected words on the lattice arcs as compared to the lattice of a correctly triggered audio. A pure trigger-phrase detector model doesn't fully utilize the intent of the user speech whereas by using the complete decoding lattice of user audio, we can effectively mitigate speech not intended for the smart assistant. We deploy two variants of GNNs in this paper based on 1) graph convolution layers and 2) self-attention mechanism respectively. Our experiments demonstrate that GNNs are highly accurate in FTM task by mitigating ∼87% of false triggers at 99% true positive rate (TPR). Furthermore, the proposed models are fast to train and efficient in parameter requirements.
HMM-TTS synthesis is a popular approach toward flexible, lowfootprint, data driven systems that produce highly intelligible speech. In spite of these strengths, speech generated by these systems exhibit some degradation in quality, attributable to an inadequacy in modeling the excitation signal that drives the parametric models of the vocal tract. This paper proposes a novel method for modeling the excitation as a low-dimensional set of coefficients, based on a non-linear map learned through an autoencoder. Through analysis-and-resynthesis experiments, and a formal listening test, we show that this model produces speech of higher perceptual quality compared to conventional pulse-excited speech signals at the p < 0.01 significance level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.