Modern scintillator detectors act as an efficient tool for detection and measurement of ionizing radiations. ZnSe based materials have been found to be a promising candidate for scintillation applications. These scintillators show much-needed scintillation efficiency along with advantages such as high thermal and radiation stability, less-toxicity, non-hygroscopicity, emissions in the visible range and small decay time etc. Further, in quantum confinement regime, they show improvement in luminescent properties and size dependent emissions. In this review article, the attempt has been made to trace the progress of ZnSe based materials towards highly efficient quantum dot scintillators. Here, the fundamental process of scintillation has been explained. Factors such as doping, annealing, heavy ion irradiation which affects the scintillation response of ZnSe based scintillators have also been discussed. Method of synthesis plays a key role in optimization of quantum dot properties. Hence, it has been tried to trace the development in methods of synthesis of quantum dots. With optimized synthesis, we can extend applications of these highly efficient quantum dot scintillators for various scientific and industrial applications.
We report on a multi-wavelength analysis of the 26 January 2014 solar eruption involving a coronal mass ejection (CME) and a Type-II radio burst, performed by combining data from various space and ground-based instruments. An increasing standoff distance with height shows the presence of a strong shock, which further manifests itself in the continuation of the metric Type-II burst into the decameter-hectometric (DH) domain. A plot of speed versus position angle (PA) shows different points on the CME leading edge traveled with different speeds. From the starting frequency of the Type-II burst and white-light data, we find that the shock signature producing the Type-II burst might be coming from the flanks of the CME. Measuring the speeds of the CME flanks, we find the southern flank to be at a higher speed than the northern flank; further the radio contours from Type-II imaging data showed that the burst source was coming from the southern flank of the CME. From the standoff distance at the CME nose, we find that the local Alfven speed is close to the white-light shock speed, thus causing the Mach number to be small there. Also, the presence of a streamer near the southern flank appears to have provided additional favorable conditions for the generation of shock-associated radio emission. These results provide conclusive evidence that the Type-II emission could originate from the flanks of the CME, which in our study is from the southern flank of the CME.
The Moon is significantly depleted in volatile elements when compared to Earth, an observation that has resulted in various formation scenarios leading to the loss of volatiles. Sodium is a moderately volatile element that is a lithophile, which can be utilized as a tracer of the volatile history in planetary bodies. It is also well observed in the exosphere of several bodies in our solar system and exoplanetary systems. But lunar surface sodium abundances have so far been measured only in samples brought back to Earth. We report on results from the first effort to provide a global-scale measurement of sodium on the lunar surface using X-ray fluorescent spectra from Chandrayaan-2. A global average of 1.33 ± 0.03 wt% derived here is higher than previously known. Trends in the sodium abundance indicate a long-lived adsorbate component that could explain the higher abundances reported here, which would act as a reservoir that sustains the lunar sodium exosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.