Computing influential nodes gets a lot of attention from many researchers for information spreading in complex networks. It has vast applications, such as viral marketing, social leader creation, rumor control, and opinion monitoring. The information-spreading ability of influential nodes is greater compared with other nodes in the network. Several researchers proposed centrality measures to compute the influential nodes in a complex network, such as degree, betweenness, closeness, semi-local centralities, and PageRank. These centrality methods are defined based on the local and/or global information of nodes in the network. However, due to their high time complexity, centrality measures based on the global information of nodes have become unsuitable for large-scale networks. Very few centrality measures exist that are based on the attributes between nodes and the structure of the network. We propose the nearest neighborhood trust PageRank (NTPR) based on the structural attributes of neighbors and nearest neighbors of nodes. We define the measure based on the degree ratio, the similarity between nodes, the trust values of neighbors, and the nearest neighbors. We computed the influential nodes in various real-world networks using the proposed centrality method. We found the maximum influence by using influential nodes with SIR and independent cascade methods. We also compare the maximum influence of our centrality measure with the existing basic centrality measures.
Recently liver diseases are becoming most lethal disorder in a number of countries. The count of patients with liver disorder has been going up because of alcohol intake, breathing of harmful gases, and consumption of food which is spoiled and drugs. Liver patient data sets are being studied for the purpose of developing classification models to predict liver disorder. This data set was used to implement prediction and classification algorithms which in turn reduces the workload on doctors. In this work, we proposed apply machine learning algorithms to check the entire patient's liver disorder. Chronic liver disorder is defined as a liver disorder that lasts for at least six months. As a result, we will use the percentage of patients who contract the disease as both positive and negative information We are processing Liver disease percentages with classifiers, and the results are displayed as a confusion matrix. We proposed several classification schemes that can effectively improve classification performance when a training data set is available. Then, using a machine learning classifier, good and bad values are classified. Thus, the outputs of the proposed classification model show accuracy in predicting the result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.