Randomized phased arrays can offer electronic steering of a single focus and simultaneous multiple foci concomitant with low levels of secondary maxima and are potentially useful as sources of high intensity focused ultrasound (HIFU). This work describes laboratory testing of a 1 MHz random phased array consisting of 254 elements on a spherical shell of radius of curvature 130 mm and diameter 170 mm. Acoustic output power and efficiency are measured for a range of input electrical powers, and field distributions for various single- and multiple-focus conditions are evaluated by a novel technique using an infrared camera to provide rapid imaging of temperature changes on the surface of an absorbing target. Experimental results show that the array can steer a single focus laterally to at least +/-15 mm off axis and axially to more than +/-15 mm from the centre of curvature of the array and patterns of four and five simultaneous foci +/-10 mm laterally and axially whilst maintaining low intensity levels in secondary maxima away from the targeted area in good agreement with linear theoretical predictions. Experiments in which pork meat was thermally ablated indicate that contiguous lesions several cm(3) in volume can be produced using the patterns of multiple foci.
This paper considers the means by which calibration data are used to convert hydrophone output voltage into pressure. Hydrophone frequency responses are complex-valued quantities, and only by correcting for the magnitude and phase variations, is it possible to accurately recover the original pressure waveform. The limitations of current hydrophone calibration techniques are discussed, and a new method of obtaining hydrophone phase data is presented. Magnitude and phase information is measured via both coarse increment (1 MHz) and fine increment (50 kHz) calibration techniques for three exemplar hydrophones (0.5 mm needle, 0.2 mm needle, and 0.4 mm membrane). Frequently hydrophone calibration data are available at frequency increments that do not match that required by the deconvolution process. Therefore, a variety of methods to interpolate the calibrated system response to obtain correctly spaced data are considered, and two spline interpolation methods are found to offer best performance. Data preconditioning and filtering to address artifacts above and below the 1 to 40 MHz bandwidth of the coarse frequency increment calibration are also investigated, and a simple procedure for selecting an appropriate low-pass filter is presented. The revised calibration data are used to deconvolve the hydrophone frequency response for experimentally derived waveforms. Standard ultrasonic output parameters (such as peak compressional and peak rarefactional pressures, pulse intensity integral, and temporal peak and pulse average acoustic intensities) are calculated from these waveforms. Although the three hydrophones used in this paper are of different types and have a range of active element sizes, all output parameters derived from the deconvolved waveforms have <5% variation from their respective population means (with the majority being within <2%).
Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a lowcost copolymer-in-oil tissue-mimicking material formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α(f) were characterised over 2-10 MHz; optical absorption µa(ʎ) and reduced scattering µs'(ʎ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical-and photo-stability were studied, along with intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6)m•s -1 and α(f) to (17.4±0.3)dB•cm -1 at 5MHz. The base material exhibited negligible µa(ʎ) and µs'(ʎ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c(f), α(f), optical transmittance and reflectance), and good photoand mechanical-stability in the relevant working range. The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.