Ultrasonic techniques have been widely used in biodiesel production, since the acoustic cavitation is a phenomenon capable of accelerating potentially the transesterification reactions. The equipment employed in such approach was simply equipment available in any regular laboratory of chemistry. Further developments introduced the ultrasound as an important tool to produce biodiesel. The main advantage is increasing the conversion of esters at reduced reaction times, with significantly lower production costs. As a method for characterization and analysis of materials, ultrasound has been used since several decades ago. However, ultrasonic analytical methods based on metrological principles are fairly recent investigated. Using ultrasound as physical principle to interrogate biodiesel is a promising field of research, with some remarkable outcomes produced so far. The aim of this chapter is to demonstrate advances of using ultrasonic techniques in production and characterization of biodiesel, as well as an appraisal of the current technology status, and provide insights into future developments.