No abstract
The Emu Chick prototype implements migratory memory-side processing in a novel hardware system. Rather than transferring large amounts of data across the system interconnect, the Emu Chick moves lightweight thread contexts to near-memory cores before the beginning of each remote memory read. Previous work has characterized the performance of the Chick prototype in terms of memory bandwidth and programming differences from more typical, non-migratory platforms, but there has not yet been an analysis of algorithms on this system. This work evaluates irregular algorithms that could benefit from the lightweight, memory-side processing of the Chick and demonstrates techniques and optimization strategies for achieving performance in sparse matrix-vector multiply operation (SpMV), breadth-first search (BFS), and graph alignment across up to eight distributed nodes encompassing 64 nodelets in the Chick system. We also define and justify relative metrics to compare prototype FPGA-based hardware with established ASIC architectures. The Chick currently supports up to 68x scaling for graph alignment, 80 MTEPS for BFS on balanced graphs, and 50% of measured STREAM bandwidth for SpMV.
The Emu Chick prototype implements migratory memory-side processing in a novel hardware system. Rather than transferring large amounts of data across the system interconnect, the Emu Chick moves lightweight thread contexts to near-memory cores before the beginning of each remote memory read. Previous work has characterized the performance of the Chick prototype in terms of memory bandwidth and programming differences from more typical, non-migratory platforms, but there has not yet been an analysis of algorithms on this system. This work evaluates irregular algorithms that could benefit from the lightweight, memory-side processing of the Chick and demonstrates techniques and optimization strategies for achieving performance in sparse matrix-vector multiply operation (SpMV), breadth-first search (BFS), and graph alignment across up to eight distributed nodes encompassing 64 nodelets in the Chick system. We also define and justify relative metrics to compare prototype FPGA-based hardware with established ASIC architectures. The Chick currently supports up to 68x scaling for graph alignment, 80 MTEPS for BFS on balanced graphs, and 50% of measured STREAM bandwidth for SpMV.
We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for example, to discover latent patterns in video and imaging applications. As the size of data sets grows, single workstations are hitting bottlenecks in both computation time and available memory. We propose a distributed-memory parallel computing solution to handle massive data sets, loading the input data across the memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-rank approximation. We present a software package called Parallel Low-rank Approximation with Nonnegativity Constraints, which implements our solution and allows for extension in terms of data (dense or sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternating direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary communication and computation, show how to extend the software to include new algorithms and/or constraints, and report efficiency and scalability results for both synthetic and real-world data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.