Vitrification could enable long-term organ preservation, but only after loading high-concentration, potentially toxic cryoprotective agents (CPAs) by perfusion. In this paper, we combine a two-compartment Krogh cylinder model with a toxicity cost function to theoretically optimize the loading of CPA (VMP) in rat kidneys as a model system. First, based on kidney perfusion experiments, we systematically derived the parameters for a CPA transport loading model, including the following: Vb = 86.0% (ra = 3.86 μm), Lp = 1.5 × 10–14 m3/(N·s), ω = 7.0 × 10–13 mol/(N·s), σ = 0.10. Next, we measured the toxicity cost function model parameters as α = 3.12 and β = 9.39 × 10–6. Combining these models, we developed an improved kidney-loading protocol predicted to achieve vitrification while minimizing toxicity. The optimized protocol resulted in shorter exposure (25 min or 18.5% less) than the gold standard kidney-loading protocol for VMP, which had been developed based on decades of empirical practice. After testing both protocols on rat kidneys, we found comparable physical and biological outcomes. While we did not dramatically reduce toxicity, we did reduce the time. As our approach is now validated, it can be used on other organs lacking defined toxicity data to reduce CPA exposure time and provide a rapid path toward developing CPA perfusion protocols for other organs and CPAs.
Heat pipes are used for a variety of cooling applications and the major users are the aerospace and electronics industries. The ideal requirement for efficient heat pipes is that they be as light as possible while still maintaining a very good thermal conductivity. In this research work, Magnesium alloy ZE41 was tested as a competent material for the manufacturing of heat pipes. The Magnesium alloy heat pipes with improved grain structure, homogeneous distribution of rare earth elements, better strength were manufactured by Friction Stir Back Extrusion (FSBE). The heat pipes were tested for compatibility with varying mixtures of working fluids namely Acetone and Ethanol by performing Immersion corrosion test. The thermal efficiency of the heat pipes was also determined from simulations by employing suitable properties of the working fluids and the component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.