Geopolymer-based sustainable red mud bricks (SRMBs) were cast using industrial by-products under ambient curing. The ingredients used were red mud, fly ash, ground granulated blast furnace slag and alccofine, along with quarry dust and alkali activators as binders. This paper briefly presents the characterization, strength and durability studies conducted on SRMBs. The optimization techniques were used to fix the right mix proportions. The optimized mix proportion was identified as R45F40G10A05: 45% red mud, 40% fly ash, 10% ground granulated blast furnace slag and 5% alccofine. The compressive, flexural and split tensile strength of the ambient-cured specimens after 28 days were observed as 35.38 MPa, 6.4 MPa and 1.67 MPa, respectively. The results were analysed and validated by the finite element method using Analysis of Systems (ANSYS) software. The percentage of water absorption in the SRMBs was less than 6%, and it was an entirely efflorescence-free product with a pleasing appearance and colour. Fifty percent of the targeted compressive strength was acquired after three days of ambient curing. SRMBs are a green product casted by encapsulating industrial by-products into a functional building element. Thus, SRMBs are a suitable and alternative product to conventional clay burnt bricks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.