The ability to tune polymer monolith porosity on multiple length scales is desirable for applications in liquid separations, catalysis, and bioengineering. To this end, we have developed a facile synthetic route to nanoporous polymer monoliths based on controlled polymerization of styrene and divinylbenzene from a poly(lactide) macro-chain transfer agent in the presence of nonreactive poly(ethylene oxide) (PEO). Simple variations in the volume fraction and/or molar mass of PEO lead to either polymerization-induced microphase separation or simultaneous macro- and microphase separation. These processes dictate the resultant morphology and allow for control of the macro- and microstructure of the monoliths. Subsequent selective etching produces monoliths with morphologies that can be tailored from mesoporous, with control over mesopore size, to hierarchically meso- and macroporous, with percolating macropores. This convenient synthetic route to porous polymer monoliths has the potential to be useful in applications where both rapid mass transport and a high surface area are required.
In many commercially available and in-house-prepared reference electrodes, nanoporous glass frits (often of the brand named Vycor) contain the electrolyte solution that forms a salt bridge between the sample and the reference solution. Recently, we showed that in samples with low ionic strength, the half-cell potentials of reference electrodes comprising nanoporous Vycor frits are affected by the sample and can shift in response to the sample composition by more than 50 mV (which can cause up to 900% error in potentiometric measurements). It was confirmed that the large potential variations result from electrostatic screening of ion transfer through the frit due to the negatively charged surfaces of the glass nanopores. Since the commercial production of porous Vycor glass was recently discontinued, new materials have been used lately as porous frits in commercially available reference electrodes, namely frits made of Teflon, polyethylene, or one of two porous glasses sold under the brand names CoralPor and Electro-porous KT. In this work, we studied the effect of the frit characteristics on the performance of reference electrodes, and show that the unwanted changes in the reference potential are not unique to electrodes with Vycor frits. Increasing the pore size in the glass frits from the <10 nm into the 1 μm range or switching to polymeric frits with pores in the 1 to 10 μm range nearly eliminates the potential variations caused by electrostatic screening of ion transport through the frit pores. Unfortunately, bigger frit pores result in larger flow rates of the reference solution through the pores, which can result in the contamination of test solutions.
We present a collection of hands-on experiments that collectively teach precollege students fundamental concepts of polymer synthesis and characterization. These interactive experiments are performed annually as part of an all-day outreach event for high school students that can inform the development of ongoing polymer education efforts in a university setting. The Advanced Polymer Synthesis experiment aims to introduce broad concepts of polymer synthesis. Techniques such as ring-opening polymerization are explained and demonstrated. The Block Polymer Micellization experiment extends this idea to block polymers for drug delivery applications. Students are taught the idea of self-assembly and prepare micelles to encapsulate β-carotene in water with flash nanoprecipitation. In terms of materials characterization, the vast physical properties space of polymers is explored. The Happy–Sad Spheres experiment provides an interactive demonstration of the glass transition temperature, while the Polymer Swelling/Rheology experiment features the interesting properties of cross-linked and entangled polymers. Evaluation surveys showed positive feedback from students in learning polymer concepts through this program. Overall, the simple principles taught by these outreach experiments can be easily incorporated into modern laboratory curricula with broad implications for disseminating public knowledge and promoting continued interest in polymer science and engineering.
Nanostructured tricontinuous block polymers allow for the preparation of single-component materials that combine multiple properties. We demonstrate the synthesis of a mesoporous material from the selective orthogonal etching of a microphase-separated tricontinuous block polymer precursor. Using the synthetic approach of polymerization-induced microphase separation (PIMS), divinylbenzene (DVB) is polymerized from a mixture of poly(isoprene) (PI) and poly(lactide) (PLA) macro-chain transfer agents. In the PIMS process in situ cross-linking by the DVB arrests structural coarsening, resulting in a disordered block polymer morphology that we posit exhibits three nonintersecting continuous domains. Selective etching of the PI domains by olefin cross metathesis and PLA domains by hydrolytic degradation produces a mesoporous polymer with two independent pore networks arising from the different etch mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.