Premature labor, fetal demise, and fetal growth restriction are accompanied by indices of inflammation or infection of the uteroplacental unit. To understand whether these events are causally related, we established an animal model of fetal demise and growth restriction and evaluated the potential utility of the anti-inflammatory cytokine interleukin-10 (IL-10). We administered low-dose endotoxin (lipopolysaccharide, or LPS, 100 microg/kg, i.p.) to third trimester rats (gestational days 14-20). Control rats received normal saline. A third group received IL-10 (100 microg/kg; s.c.) concomitantly with LPS for 7 prenatal days. Cytokine gene expression (IL-10 and TNF-alpha) was evaluated by RT-PCR and tissue levels (TNF-alpha) were determined by ELISA. Apoptosis was evaluated by TdT-mediated dUTP nick end labeling immunohistochemistry, and nitric oxide (NO) levels were quantified by microelectrode electrochemical detection in explants in culture media. LPS exposure resulted in 43% fetal demise and reduced the size of the surviving fetuses. Placental weight was not altered by LPS. IL-10 attenuated the LPS-induced fetal death rate (to 22%) and growth restriction (P<0.05). In normal rats, IL-10 did not affect fetus size or the incidence of resorptions, although placental size was marginally smaller. Increased uterine TNF-alpha content and NO release and apoptosis of uterine epithelia and muscularis were hallmarks of the LPS model. All were normalized by IL-10. IL-10 may represent a new therapeutic option for the treatment of a variety of perinatal complications. Benefit may result from the suppression of TNF-alpha- and NO-mediated cell death.
We evaluated the effects of sustained perinatal inhibition of NO synthase (NOS) on hyperoxia induced lung injury in newborn rats. NG-nitro-Larginine-methyl-ester (L-NAME) or untreated water was administered to pregnant rats for the final 7 days of gestation and during lactation; followed by postnatal exposure to hyperoxia (>95% O2) or room air. The survival rate of L-NAME treated pups when placed in > 95% O2 at birth was significantly lower than controls from day 4 (L-NAME, 87%; control pups, 100%, p < 0.05) to 14 (L-NAME, 0%; control pups, 53%, p < 0.05). Foetal pulmonary artery vasoconstriction was induced by L-NAME with a decrease in internal diameter from 0.88 ± 0.03 mm to 0.64 ± 0.01 mm in control vs. L-NAME groups (p < 0.05), respectively. We conclude that perinatal NOS inhibition results in pulmonary artery vasoconstriction and a decreased tolerance to hyperoxia induced lung injury in newborn rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.