We report a device that monolithically integrates optically pumped (20-21) III-nitride quantum wells (QWs) with 560 nm emission on top of electrically injected QWs with 450 nm emission. The higher temperature growth of the blue light-emitting diode (LED) was performed first, which prevented thermal damage to the higher indium content InGaN of the optically pumped QWs. A tunnel junction (TJ) was incorporated between the optically pumped and electrically injected QWs; this TJ enabled current spreading in the buried LED. Metalorganic chemical vapor deposition enabled the growth of InGaN QWs with high radiative efficiency, while molecular beam epitaxy was leveraged to achieve activated buried p-type GaN and the TJ. This initial device exhibited dichromatic optically polarized emission with a polarization ratio of 0.28. Future improvements in spectral distribution should enable phosphor-free polarized white light emission.
The performance of multiple quantum well green and yellow semipolar light-emitting diodes (LEDs) is limited by relaxation of highly strained InGaN-based active regions and the subsequent formation of nonradiative defects. Limited area epitaxy was used to block glide of substrate threading dislocations and to reduce the density of misfit dislocations (MDs) directly beneath the active region of (202¯1) LEDs. Devices were grown and fabricated on a 1D array of narrow substrate mesas to limit the MD run length. Reducing the mesa width from 20 μm to 5 μm lowered the density of basal plane and non-basal plane MDs on the mesas and limited the number of defect-generating dislocation intersections. This improvement in material quality yielded a 73% enhancement in peak external quantum efficiency for the devices with the narrowest mesas compared to the devices with the widest mesas.
We report a device design that monolithically integrates an electrically injected blue light-emitting diode grown on the (202¯1¯) face of a bulk GaN substrate and yellow emitting optically pumped InGaN quantum wells (QWs) grown on the (202¯1) face. Emission peaks are observed at 440 nm and 560 nm from the electrically injected and optically pumped QWs, respectively. The ratio of blue to yellow light can be optimized to result in polarized white light emission from this phosphor-free device. We demonstrate emission with Commission Internationale de l'Eclairage x- and y-chromaticity coordinates of (0.28, 0.29) and an optical polarization ratio of 0.40.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.