In spite of strong evidence for viability-based sexual selection and sex ratio adjustments, the blue tit, Parus caeruleus, is regarded as nearly sexually monomorphic and no epigamic signals have been found. The plumage coloration has not, however, been studied in relation to bird vision, which extends to the UV-A waveband (320^400 nm). Using molecular sex determination and UV/VIS spectrometry, we report here that blue tits are sexually dichromatic in UV/blue spectral purity (chroma) of the brilliant crown patch. It is displayed in courtship by horizontal posturing and erected nape feathers. A previously undescribed sexual dimorphism in crown size (controlling for body size) further supports its role as an epigamic ornament. Against`grey-brown' leaf litter and bark during pair formation in early spring, but also against green vegetation, UV contributes strongly to conspicuousness and sexual dimorphism. This should be further enhanced by the UV/bluish early morning skylight (`woodland shade') in which blue tits display. Among 18 breeding pairs, there was strong assortative mating with respect to UV chroma, but not size, of the crown ornament. We conclude that blue tits are markedly sex dimorphic in their own visual world, and that UV/violet coloration probably plays a role in blue tit mate acquisition.
Bright-red colors in vertebrates are commonly involved in sexual, social, and interspecific signaling [1-8] and are largely produced by ketocarotenoid pigments. In land birds, ketocarotenoids such as astaxanthin are usually metabolically derived via ketolation of dietary yellow carotenoids [9, 10]. However, the molecular basis of this gene-environment mechanism has remained obscure. Here we use the yellowbeak mutation in the zebra finch (Taeniopygia guttata) to investigate the genetic basis of red coloration. Wild-type ketocarotenoids were absent in the beak and tarsus of yellowbeak birds. The yellowbeak mutation mapped to chromosome 8, close to a cluster of cytochrome P450 loci (CYP2J2-like) that are candidates for carotenoid ketolases. The wild-type zebra finch genome was found to have three intact genes in this cluster: CYP2J19A, CYP2J19B, and CYP2J40. In yellowbeak, there are multiple mutations: loss of a complete CYP2J19 gene, a modified remaining CYP2J19 gene (CYP2J19(yb)), and a non-synonymous SNP in CYP2J40. In wild-type birds, CYP2J19 loci are expressed in ketocarotenoid-containing tissues: CYP2J19A only in the retina and CYP2J19B in the beak and tarsus and to a variable extent in the retina. In contrast, expression of CYP2J19(yb) is barely detectable in the beak of yellowbeak birds. CYP2J40 has broad tissue expression and shows no differences between wild-type and yellowbeak. Our results indicate that CYP2J19 genes are strong candidates for the carotenoid ketolase and imply that ketolation occurs in the integument in zebra finches. Since cytochrome P450 enzymes include key detoxification enzymes, our results raise the intriguing possibility that red coloration may be an honest signal of detoxification ability.
Sexual-selection theory assumes that there are costs associated with ornamental plumage coloration. While pigment-based ornaments have repeatedly been shown to be condition dependent, this has been more difficult to demonstrate for structural colours. We present evidence for condition dependence of both types of plumage colour in nestling blue tits (Parus caeruleus). Using reflectance spectrometry, we show that blue tit nestlings are sexually dichromatic, with males having more chromatic (more 'saturated') and ultraviolet (UV)-shifted tail coloration and more chromatic yellow breast coloration. The sexual dimorphism in nestling tail coloration is qualitatively similar to that of chick-feeding adults from the same population. By contrast, the breast plumage of adult birds is not sexually dichromatic in terms of chroma. In nestlings, the chroma of both tail and breast feathers is positively associated with condition (body mass on day 14). The UV/blue hue of the tail feathers is influenced by paternally inherited genes, as indicated by a maternal half-sibling comparison. We conclude that the expression of both carotenoid-based and structural coloration seems to be condition dependent in blue tit nestlings, and that there are additional genetic effects on the hue of the UV/blue tail feathers. The signalling or other functions of sexual dichromatism in nestlings remain obscure. Our study shows that nestling blue tits are suitable model organisms for the study of ontogenetic costs and heritability of both carotenoid-based and structural colour in birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.