Emerging technologies such as Internet of Things (IoT) can provide significant potential in Smart Farming and Precision Agriculture applications, enabling the acquisition of real-time environmental data. IoT devices such as Unmanned Aerial Vehicles (UAVs) can be exploited in a variety of applications related to crops management, by capturing high spatial and temporal resolution images. These technologies are expected to revolutionize agriculture, enabling decision-making in days instead of weeks, promising significant reduction in cost and increase in the yield. Such decisions enable the effective application of farm inputs, supporting the four pillars of precision agriculture, i.e., apply the right practice, at the right place, at the right time and with the right quantity. However, the actual proliferation and exploitation of UAVs in Smart Farming has not been as robust as expected mainly due to the challenges confronted when selecting and deploying the relevant technologies, including the data acquisition and image processing methods. The main problem is that still there is no standardized workflow for the use of UAVs in such applications, as it is a relatively new area. In this article, we review the most recent applications of UAVs for Precision Agriculture. We discuss the most common applications, the types of UAVs exploited and then we focus on the data acquisition methods and technologies, appointing the benefits and drawbacks of each one. We also point out the most popular processing methods of aerial imagery and discuss the outcomes of each method and the potential applications of each one in the farming operations.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Unmanned aerial vehicles (UAVs) have enormous potential in enabling new applications in various areas, ranging from military, security, medicine, and surveillance to traffic-monitoring applications. Lately, there has been heavy investment in the development of UAVs and multi-UAVs systems that can collaborate and complete missions more efficiently and economically. Emerging technologies such as 4G/5G networks have significant potential on UAVs equipped with cameras, sensors, and GPS receivers in delivering Internet of Things (IoT) services from great heights, creating an airborne domain of the IoT. However, there are many issues to be resolved before the effective use of UAVs can be made, including security, privacy, and management. As such, in this paper we review new UAV application areas enabled by the IoT and 5G technologies, analyze the sensor requirements, and overview solutions for fleet management over aerial-networking, privacy, and security challenges. Finally, we propose a framework that supports and enables these technologies on UAVs. The introduced framework provisions a holistic IoT architecture that enables the protection of UAVs as “flying” things in a collaborative networked environment.
Smart Farming is a development that emphasizes on the use of modern technologies in the cyber-physical field management cycle. Technologies such as the Internet of Things (IoT) and Cloud Computing have accelerated the digital transformation of the conventional agricultural practices promising increased production rate and product quality. The adoption of smart farming though is hampered because of the lack of models providing guidance to practitioners regarding the necessary components that constitute IoT-based monitoring systems. To guide the process of designing and implementing Smart farming monitoring systems, in this paper we propose a generic reference architecture model, taking also into consideration a very important non-functional requirement, the energy consumption restriction. Moreover, we present and discuss the technologies that incorporate the seven layers of the architecture model that are the Sensor Layer, the Link Layer, the Encapsulation Layer, the Middleware Layer, the Configuration Layer, the Management Layer and the Application Layer. Furthermore, the proposed Reference Architecture model is exemplified in a real-world application for surveying Saffron agriculture in Kozani, Greece.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.