No abstract
Persistent plant viruses, by altering phenotypic and physiological traits of their hosts, could modulate the host preference and fitness of hemipteran vectors. A majority of such modulations increase vector preference for virus-infected plants and improve vector fitness, ultimately favouring virus spread. Nevertheless, it remains unclear how these virus-induced modulations on vectors vary temporally, and whether host resistance to the pathogen influences such effects. This study addressed the two questions using a Begomovirus-whitefly-tomato model pathosystem. Tomato yellow leaf curl virus (TYLCV) -susceptible and TYLCV-resistant tomato genotypes were evaluated by whitefly-mediated transmission assays. Quantitative PCR revealed that virus accumulation decreased after an initial spike in all genotypes. TYLCV accumulation was less in resistant than in susceptible genotypes at 3, 6, and 12 weeks post inoculation (WPI). TYLCV acquisition by whiteflies over time from resistant and susceptible genotypes was also consistent with virus accumulation in the host plant. Furthermore, preference assays indicated that non-viruliferous whiteflies preferred virus-infected plants, whereas viruliferous whiteflies preferred non-infected plants. However, this effect was prominent only with the susceptible genotype at 6 WPI. The development of whiteflies on non-infected susceptible and resistant genotypes was not significantly different. However, developmental time was reduced when a susceptible genotype was infected with TYLCV. Together, these results suggest that vector preference and development could be affected by the timing of infection and by host resistance. These effects could play a crucial role in TYLCV epidemics.
Sweetpotato whitefly, Bemisia tabaci (Gennadius), and whitefly-transmitted tomato yellow leaf curl virus (TYLCV) are major threats to tomato production in the southeastern United States. TYLCV was introduced to Florida from the Caribbean islands and has spread to other southern states of the United States. In Georgia, in recent years, the incidence of TYLCV has been steadily increasing. Studies were conducted to monitor population dynamics of whiteflies in the vegetable production belt of Georgia, to evaluate TYLCV-resistant genotypes against whiteflies and TYLCV, and to assess the potential role of resistant genotypes in TYLCV epidemiology. Monitoring studies indicated that the peak incidence of whiteflies varied seasonally from year to year. In general, whitefly populations were not uniformly distributed. Tomato genotypes exhibited minor differences in their ability to support whitefly populations. TYLCV symptoms were visually undetectable in all but one resistant genotype. The infection rates (visually) in susceptible genotypes ranged from 40 to 87%. Greenhouse inoculations with viruliferous whiteflies followed by polymerase chain reaction (PCR) indicated that up to 100% of plants of resistant genotypes were infected, although predominantly symptomless. TYLCV acquisition by whiteflies from TYLCV-infected genotypes was tested by PCR; TYLCV acquisition rates from resistant genotypes were less than from susceptible genotypes. Nevertheless, this difference did not influence TYLCV transmission rates from resistant to susceptible genotypes. Results emphasize that resistant genotypes can serve as TYLCV and whitefly reservoirs and potentially influence TYLCV epidemics.
Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.
The recent movement of fire ants into previously non-infested northwest Georgia counties led to an investigation of their identity. Gas chromatograph traces of the cuticular hydrocarbon patterns of these ants showed them to be hybrids of Solenopsis invicta Buren and Solenopsis richteri Forel. This study extends the known range of the hybrid to ten Georgia counties, twenty-one Alabama counties, and five Mississippi counties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.