Early-type galaxies (ETGs) possess total density profiles close to isothermal, which can lead to non-Gaussian line-of-sight velocity dispersion (LOSVD) under anisotropic stellar orbits. However, recent observations of local ETGs in the MASSIVE Survey reveal outer kinematic structures at 1.5Reff (effective radius) that are inconsistent with fixed isothermal density profiles; the authors proposed varying density profiles as an explanation. We aim to verify this conjecture and understand the influence of stellar assembly on these kinematic features through mock ETGs in IllustrisTNG. We create mock Integral-Field-Unit observations to extract projected stellar kinematic features for 207 ETGs with stellar mass M* ≥ 1011 M⊙ in TNG100-1. The mock observations reproduce the key outer (1.5Reff) kinematic structures in the MASSIVE ETGs, including the puzzling positive correlation between velocity dispersion profile outer slope γouter and the kurtosis h4’s gradient. We find that h4 is uncorrelated with stellar orbital anisotropy beyond Reff; instead we find that the variations in γouter and outer h4 (a good proxy for h4 gradient) are both driven by variations of the density profile at the outskirts across different ETGs. These findings corroborate the proposed conjecture and rule out velocity anisotropy as the origin of non-Gaussian outer kinematic structure in ETGs. We also find that the outer kurtosis and anisotropy correlate with different stellar assembly components, with the former related to minor mergers or flyby interactions while the latter is mainly driven by major mergers, suggesting distinct stellar assembly origins that decorrelates the two quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.