The essential oil of long-time stored seeds of dill (Anethum graveolens L.) from Bulgaria was analyzed by physicochemical methods, gas chromatography (GC), GC-mass spectrometry (MS) (achiral and chiral phases), and olfactometry, and its antimicrobial activity was tested by using different strains of microorganisms. More than 40 constituents of the essential dill oil, obtained from seeds stored for more than 35 years, could be identified as essential volatiles, responsible for the pleasant fresh (D-limonene) and spicy (D-carvone) odor of a high quality. As aroma impact compounds, D-carvone (50.1%) and D-limonene (44.1%) were found. Antimicrobial testings showed high activity of the essential A. graveolens oil against the mold Aspergillus niger and the yeasts Saccharomyces cerevisiae and Candida albicans.
The essential oil of seeds of cumin (Cuminum cyminum L.) from Bulgaria stored for more than 35 years was analyzed by physicochemical methods, GC, GC-MS and olfactometry and its antimicrobial activity tested using different strains of microorganisms. More than sixty constituents of this cumin oil could be identified as essential volatiles, responsible for the pleasant fresh, clean, spicy (typical cumin-like) odour of a high quality product. Cumin aldehyde (36%), b-pinene (19.3%), p-cymene (18.4%) and c-terpinene (15.3%) were the principal compounds found. Antimicrobial testing showed high activity of the essential C. cyminum oil against the mold Aspergillus niger, the Gram (+) bacteria Bacillus subtilis and Staphylococcus epidermidis as well as the yeast Saccharomyces cerevisiae and Candida albicans.
Bay laurel ( Laurus nobilis L.) is an evergreen tree. The objective of this study was to determine the chemical composition (polyphenols, essential oil [EO], lipid fraction, cellulose, and protein content) of laurel fruits collected from Greece (Mount Athos) and Georgia (the village of Meria), and to evaluate the antimicrobial activity of laurel fruit EOs. The major phenolic acids in the fruits from Greece were p-coumaric acid (free 261.6 µg/g) and vanillic acid (free 253.1 µg/g and conjugated 925.8 µg/g). The major phenolic acids in fruits from Georgia were vanillic acid (free 105.6 µg/g and caffeic acid [conjugated 439.2 µg/g], and syringic acid [conjugated 390.7 µg/g]). The laurel fruit EOs from Greece (1.4% content) and Georgia (1.6%) had distinct composition. Monoterpene hydrocarbons were the dominant group of compounds in the EOs, with 49.7% in the EO from Greece and 68.7% in the EO from Georgia. The major constituents of the fruit EO from Greece were 1,8-cineole (18.2%), α-phellandrene (15.0 %), β-pinene (9.4%), and α -pinene (9.1%), whereas the ones from Georgia were trans-β-ocimene (59.4%) and 1,8-cineole (7.6%). Laurel fruit EO from Greece and Georgia demonstrated low to moderate antimicrobial activity against pathogenic and spoilage microorganisms and the dimorphic yeast Candida albicans. The main fatty acids (FAs) in the lipid fractions were oleic, palmitic, and linoleic; there were differences in FA composition between the shells and the seeds of the fruits from the two countries. γ-Тocopherol predominated in the tocopherol fraction of the lipids from fruits shells and seeds from Greece (65.3% and 54.4%, respectively), whereas β-tocopherol predominated in fruits shells and seeds from Georgia (93.7% and 45.6%, respectively). Currently underutilized, the laurel fruits from both Greece and Georgia contain various valuable compounds that may potentially be used for perfumery, cosmetic, and pharmaceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.