BackgroundParagyrodactylus Gvosdev and Martechov, 1953, a viviparous genus of ectoparasite within the Gyrodactylidae, contains three nominal species all of which infect Asian river loaches. The group is suspected to be a basal lineage within Gyrodactylus Nordmann, 1832 sensu lato although this remains unclear. Further molecular study, beyond characterization of the standard Internal Transcribed Spacer region, is needed to clarify the evolutionary relationships within the family and the placement of this genus.MethodsThe mitochondrial genome of Paragyrodactylus variegatus You, King, Ye and Cone, 2014 was amplified in six parts from a single worm, sequenced using primer walking, annotated and analyzed using bioinformatic tools.ResultsThe mitochondrial genome of P. variegatus is 14,517 bp, containing 12 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a major non-coding region (NCR). The overall A + T content of the mitochondrial genome is 76.3%, which is higher than all reported mitochondrial genomes of monogeneans. All of the 22 tRNAs have the typical cloverleaf secondary structure, except tRNACys, tRNASer1 and tRNASer2 that lack the dihydrouridine (DHU) arm. There are six domains (domain III is absent) and three domains in the inferred secondary structures of the large ribosomal subunit (rrnL) and small ribosomal subunit (rrnS), respectively. The NCR includes six 40 bp tandem repeat units and has the double identical poly-T stretches, stem-loop structure and some surrounding structure elements. The gene order (tRNAGln, tRNAMet and NCR) differs in arrangement compared to the mitochondrial genomes reported from Gyrodactylus spp.ConclusionThe Duplication and Random Loss Model and Recombination Model together are the most plausible explanations for the variation in gene order. Both morphological characters and characteristics of the mitochondrial genome support Paragyrodactylus as a distinct genus from Gyrodactylus. Considering their specific distribution and known hosts, we believe that Paragyrodactylus is a relict freshwater lineage of viviparous monogenean isolated in the high plateaus of central Asia on closely related river loaches.
In this study, we describe the complete mitochondrial genomes of Gyrodactylus brachymystacis and Gyrodactylus parvae infecting rainbow trout (Oncorhynchus mykiss) and the invasive topmouth gudgeon (Pseudorasbora parva), respectively. The two circular genomes have a common genome organization found in other Gyrodactylus species. Comparative analyses of mitochondrial genomes from six Gyrodactylus species were carried out to determine base composition, codon usage, transfer RNA and ribosomal RNA genes, major non-coding regions, and nucleotide diversity within the genus. We also provide the first universal models of the secondary structures of rrnS and rrnL for this group thereby promoting utilization of these genetic markers. Universal primers provided herein can be used to obtain more mitochondrial information for pathogen identification and may reveal different levels of molecular phylogenetic inferences for this lineage.
Fundulotrema porterensis n. sp. (Monogenea: Gyrodactylidae) is described from the mummichog, Fundulus heteroclitus (L.; Cyprinodontidae), inhabiting Porters Lake, Nova Scotia, Canada. The new parasite species is characterized by having a ventral bar with small anterolateral processes and linguiform membrane, differentiating it from all other known species of Fundulotrema. The morphological description of F. porterensis is supplemented with 1011 sequenced base pairs (bp) of ribosomal DNA (rDNA) spanning both internal transcribed spacers (ITS-1 and ITS-2) and 5.8S regions of the genome. A BLAST (basic local alignment search tool) search revealed that the 5.8S (157 bp) region varied by 1 bp from Gyrodactylus turnbulli Harris, 1986 and G. pictae Cable, Oosterhout, Barson and Harris, 2005, which also infect cyprinodontids. Morphometrically, F. porterensis most closely resembles Fundulotremafoxi (Rawson, 1973), but the 2 species are easily separated by length of hamuli (50.7 vs. 42.2 microm, respectively), length of anterolateral process of the ventral bar (4.9 vs. 8.9 microm), shape of marginal hooks, and shape of the ventral bar membrane. A morphological and molecular supplemental diagnosis of Gyrodactylus stephanus Mueller, 1937, from the mummichog, is also presented. This new material provides previously unrecorded information on the attributes of the ventral bar, marginal hooks, and also clarifies the structure of the male copulatory organ (MCO).
The guppy (Poecilia reticulata) is a model species in ecology and evolution. Many studies have examined effects of predators on guppy behaviour, reproduction, survival strategies, feeding and other life-history traits, but few have studied variation in their parasite diversity. We surveyed parasites of 18 Trinidadian populations of guppy, to provide insight on the geographical mosaic of parasite variability, which may act as a source of natural selection acting on guppies. We found 21 parasite species, including five new records for Trinidad. Spatial variation in parasite diversity was significantly higher than that of piscine predators, and significant variation in parasite richness among individuals and populations was correlated with: (i) host size, (ii) snail species richness, and (iii) the distance between populations. Differences in parasite species richness are likely to play an important, yet underestimated role in the biology of this model species of vertebrate ecology and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.