Alaska encompasses several climate types because of its vast size, high-latitude location, proximity to oceans, and complex topography. There is a great need to understand how climate varies regionally for climatic research and forecasting applications. Although climate-type zones have been established for Alaska on the basis of seasonal climatological mean behavior, there has been little attempt to construct climate divisions that identify regions with consistently homogeneous climatic variability. In this study, cluster analysis was applied to monthly-average temperature data from 1977 to 2010 at a robust set of weather stations to develop climate divisions for the state. Mean-adjusted Advanced Very High Resolution Radiometer surface temperature estimates were employed to fill in missing temperature data when possible. Thirteen climate divisions were identified on the basis of the cluster analysis and were subsequently refined using local expert knowledge. Divisional boundary lines were drawn that encompass the grouped stations by following major surrounding topographic boundaries. Correlation analysis between station and gridded downscaled temperature and precipitation data supported the division placement and boundaries. The new divisions north of the Alaska Range were the North Slope, West Coast, Central Interior, Northeast Interior, and Northwest Interior. Divisions south of the Alaska Range were Cook Inlet, Bristol Bay, Aleutians, Northeast Gulf, Northwest Gulf, North Panhandle, Central Panhandle, and South Panhandle. Correlations with various Pacific Ocean and Arctic climatic teleconnection indices showed numerous significant relationships between seasonal division average temperature and the Arctic Oscillation, Pacific-North American pattern, North Pacific index, and Pacific decadal oscillation.
A study of the freshwater discharge into the Gulf of Alaska (GOA) has been carried out. Using available streamgage data, regression equations were developed for monthly flows. These equations express discharge as a function of basin physical characteristics such as area, mean elevation, and land cover, and of basin meteorological characteristics such as temperature, precipitation, and accumulated water year precipitation. To provide the necessary input meteorological data, temperature and precipitation data for a 40 year hind-cast period were developed on high-spatial-resolution grids using weather station data, PRISM climatologies, and statistical downscaling methods. Runoff predictions from the equations were found to agree well with observations. Once developed, the regression equations were applied to a network of delineated watersheds spanning the entire GOA drainage basin. The region was divided into a northern region, ranging from the Aleutian Chain to the Alaska/Canada border in the southeast panhandle, and a southern region, ranging from there to the Fraser River. The mean annual runoff volume into the northern GOA region was found to be 792 6 120 km 3 yr 21 . A water balance using MODIS-based evapotranspiration rates yielded seasonal storage volumes that were consistent with GRACE satellite-based estimates. The GRACE data suggest that an additional 57 6 11 km 3 yr 21 be added to the runoff from the northern region, due to glacier volume loss (GVL) in recent years. This yields a total value of 849 6 121 km 3 yr 21 . The ease of application of the derived regression equations provides an accessible tool for quantifying mean annual values, seasonal variation, and interannual variability of runoff in any ungaged basin of interest.
Cities around the world are struggling to access additional water supplies to support their continued growth because their freshwater sources are becoming exhausted. Half of all cities with populations greater than 100,000 are located in water-scarce basins, and in these basins agricultural water consumption accounts for more than 90% of all freshwater depletions. In this paper we review the water development histories of four major cities: Adelaide, Phoenix, San Antonio and San Diego. We identify a similar pattern of water development in these cities, which begins with the exhaustion of local surface and groundwater supplies, continues with importation of water from other basins, and then turns to recycling of wastewater or stormwater, or desalination of either seawater or brackish groundwater. Demand management through water conservation has mitigated, to varying degrees, the timing of water-system expansions and the extent to which cities rely on new sources of supply. This typical water development pattern in cities is undesirable from a sustainability perspective, as it is usually associated with serious ecological and social impacts as well as sub-optimal cost effectiveness. We highlight case examples and opportunities to invest in water conservation measures, particularly through urban-rural partnerships under which cities work with farmers to implement irrigation conservation measures, thereby freeing up water for ecological restoration and use by cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.