At the beginning of the twentieth century, Sir Ronald Fisher introduced the concept of applying statistical analysis during the planning stages of research rather than at the end of experimentation. When statistical thinking is applied from the design phase, it enables to build quality into the product, by adopting Deming's profound knowledge approach, comprising system thinking, variation understanding, theory of knowledge, and psychology. The pharmaceutical industry was late in adopting these paradigms, compared to other sectors. It heavily focused on blockbuster drugs, while formulation development was mainly performed by One Factor At a Time (OFAT) studies, rather than implementing Quality by Design (QbD) and modern engineering-based manufacturing methodologies. Among various mathematical modeling approaches, Design of Experiments (DoE) is extensively used for the implementation of QbD in both research and industrial settings. In QbD, product and process understanding is the key enabler of assuring quality in the final product. Knowledge is achieved by establishing models correlating the inputs with the outputs of the process. The mathematical relationships of the Critical Process Parameters (CPPs) and Material Attributes (CMAs) with the Critical Quality Attributes (CQAs) define the design space. Consequently, process understanding is well assured and rationally leads to a final product meeting the Quality Target Product Profile (QTPP). This review illustrates the principles of quality theory through the work of major contributors, the evolution of the QbD approach and the statistical toolset for its implementation. As such, DoE is presented in detail since it represents the first choice for rational pharmaceutical development.
The physical structure and polymorphism of nimodipine were studied by means of micro-Raman, WAXD, DSC, and SEM for cases of the pure drug and its solid dispersions in PEG 4000, prepared by both the hot-melt and solvent evaporation methods. The dissolution rates of nimodipine/PEG 4000 solid dispersions were also measured and discussed in terms of their physicochemical characteristics. MicroRaman and WAXD revealed a signifi cant amorphous portion of the drug in the samples prepared by the hot-melt method, and that saturation resulted in local crystallization of nimodipine forming, almost exclusively, modifi cation I crystals (racemic compound). On the other hand, mainly modifi cation II crystals (conglomerate) were observed in the solid dispersions prepared by the solvent evaporation method. However, in general, both drug forms may appear in the solid dispersions. SEM and HSM microscopy studies indicated that the drug particle size increased with drug content. The dissolution rates were substantially improved for nimodipine from its solid dispersions compared with the pure drug or physical mixtures. Among solid dispersions, those resulting from solvent coevaporation exhibited a little faster drug release at drug concentrations lower than 20 wt%. Drug amorphization is the main reason for this behavior. At higher drug content the dissolution rates became lower compared with the samples from melt, due to the drug crystallization in modifi cation II, which results in higher crystallinity and increased particle size. Overall, the best results were found for low drug content, for which lower drug crystallinity and smaller particle size were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.