Nanosized hydrogels (nanogels) have attracted considerable attention as multifunctional polymer-based drug delivery systems. Their versatility is demonstrated both in drug encapsulation and drug release. Nanogels can be designed to facilitate the encapsulation of diverse classes of bioactive compounds. With optimization of their molecular composition, size and morphology, nanogels can be tailor-made to sense and respond to environmental changes in order to ensure spatial and stimuli-controlled drug release in vivo. This manuscript aims to highlight recent advances in the interface between biology and nanomedicine with the emphasis on nanogels as carriers for controlled drug delivery
This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel biomedical applications including bio-imaging, drug delivery and ablation of tumor tissues.
Efficient and safe cell engineering by transfection of nucleic acids remains one of the long-standing hurdles for fundamental biomedical research and many new therapeutic applications, such as CAR T cell-based therapies. mRNA has recently gained increasing attention as a more safe and versatile alternative tool over viral- or DNA transposon-based approaches for the generation of adoptive T cells. However, limitations associated with existing nonviral mRNA delivery approaches hamper progress on genetic engineering of these hard-to-transfect immune cells. In this study, we demonstrate that gold nanoparticle-mediated vapor nanobubble (VNB) photoporation is a promising upcoming physical transfection method capable of delivering mRNA in both adherent and suspension cells. Initial transfection experiments on HeLa cells showed the importance of transfection buffer and cargo concentration, while the technology was furthermore shown to be effective for mRNA delivery in Jurkat T cells with transfection efficiencies up to 45%. Importantly, compared to electroporation, which is the reference technology for nonviral transfection of T cells, a fivefold increase in the number of transfected viable Jurkat T cells was observed. Altogether, our results point toward the use of VNB photoporation as a more gentle and efficient technology for intracellular mRNA delivery in adherent and suspension cells, with promising potential for the future engineering of cells in therapeutic and fundamental research applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.