A C-terminal portion of Ara12 subtilisin-like protease (residues 542-757) was expressed in Escherichia coli cells as a fusion protein bound to maltose binding protein. Polyclonal antisera raised against the expressed protein were used to examine the tissue specificity and subcellular localization of Ara12. The protease was found predominantly in the silique and stem of plants, but was hardly detectable in leaf and not seen in root tissue. The distribution observed using immunological techniques is different from that seen by an RNA analysis study, which demonstrated similar mRNA abundance in the stem and leaves. Using immunogold labelling, Ara12 was shown to have an extracellular localization and was found in the intercellular spaces in stem tissue. Ara12 protease was purified to homogeneity from Arabidopsis thaliana cell suspension cultures by anion exchange and hydrophobic interaction chromatography. Proteolytic activity of Ara12 was inhibited by a number of serine protease inhibitors, but was almost unaffected by inhibitors of other catalytic classes of proteases. Optimal proteolytic activity was displayed under acidic conditions (pH 5.0). Ara12 activity was relatively thermostable and was stimulated in the presence of Ca2+ ions. Substrate specificity studies were conducted using a series of internally quenched fluorogenic peptide substrates. At the P1 position of substrates, hydrophobic residues, such as Phe and Ala, were preferred to Arg, whilst at the P1' position, Asp, Leu and Ala were most favoured. Possible functions of Ara12 are discussed in the light of the involvement of a number of plant subtilisin-like proteases in morphogenesis.
We present a detailed analysis of the oligomeric subunit organisation of pneumolysin by the use of negative stain electron microscopy and image processing to produce a projection density map. Analysis of the rotational symmetry has revealed a large and variable subunit number, between 40-50. The projected subunit density by rotational averaging shows at least two distinct subunit domains at different radial positions. Side views of the rings reveal further details concerning the dimensions of the oligomer in the membrane. On the basis of these observations and our previous knowledge of the monomer domain structure we propose that the 4-domain subunits are packed in a square planar arrangement to form the pneumolysin oligomer.Key words." Pneumolysin; Pore-forming toxin; Electron microscopy; Image processing copy. This model consists of a single ring of subunits which contains ~30 subunits. The incorporation of pneumolysin oligomers into liposomes rather than sheep erythrocytes and the use of image processing have enabled a more refined analysis of the pneumolysin oligomeric structures. Here we present (i) a symmetry-averaged projected density map of a pneumolysin oligomer and (ii) side views of the oligomers. On the basis of these images we propose a compact 4-domain subunit model for the oligomer.
Materials and methods
Pneumolysin expression and purificationWildtype pneumolysin protein was expressed in Escherichia coli JMI01 and purified as described previously [12]. Sample purity was checked by SDS PAGE analysis and haemolytic activity assayed as described previously [12].
Chloroplasts, as well as other, non-photosynthetic types of plastid, are characteristic structures within plant cells. They are relatively large organelles (typically 1-5 μm in diameter), and so can readily be analysed by electron microscopy. Chloroplast structure is remarkably complex, comprising at least six distinct sub-organellar compartments, and is sensitive to developmental changes, environmental effects, and genetic lesions. Transmission electron microscopy (TEM), therefore, represents a powerful technique for monitoring the effects of various changing parameters or treatments on the development and differentiation of these important organelles. We describe a method for the analysis of Arabidopsis plant material by TEM, primarily for the assessment of plastid ultrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.