Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k) log |x|) bits of memory on instances (x, k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization.⋆ Supported by the Emmy Noether-program of the DFG, KR 4286/1. 1 Unless NP ⊆ coNP/poly and the polynomial hierarchy collapses.
We investigate whether kernelization results can be obtained if we restrict kernelization algorithms to run in logarithmic space. This restriction for kernelization is motivated by the question of what results are attainable for preprocessing via simple and/or local reduction rules. We find kernelizations for d-hitting set(k), d-set packing(k), edge dominating set(k) and a number of hitting and packing problems in graphs, each running in logspace. Additionally, we return to the question of linear-time kernelization. For d-hitting set(k) a linear-time kernelization was given by van Bevern [Algorithmica (2014)]. We give a simpler procedure and save a large constant factor in the size bound. Furthermore, we show that we can obtain a linear-time kernel for d-set packing(k) as well.
Abstract. Dynamic programming on tree decompositions is a frequently used approach to solve otherwise intractable problems on instances of small treewidth. In recent work by Bodlaender et al. [7], it was shown that for many connectivity problems, there exist algorithms that use time, linear in the number of vertices, and single exponential in the width of the tree decomposition that is used. The central idea is that it suffices to compute representative sets, and these can be computed efficiently with help of Gaussian elimination. In this paper, we give an experimental evaluation of this technique for the Steiner Tree problem. A comparison of the classic dynamic programming algorithm and the improved dynamic programming algorithm that employs the table reduction shows that the new approach gives significant improvements on the running time of the algorithm and the size of the tables computed by the dynamic programming algorithm, and thus that the rank based approach from Bodlaender et al. [7] does not only give significant theoretical improvements but also is a viable approach in a practical setting, and showcases the potential of exploiting the idea of representative sets for speeding up dynamic programming algorithms.
The NP-hard Effectors problem on directed graphs is motivated by applications in network mining, particularly concerning the analysis of probabilistic information-propagation processes in social networks. In the corresponding model the arcs carry probabilities and there is a probabilistic diffusion process activating nodes by neighboring activated nodes with probabilities as specified by the arcs. The point is to explain a given network activation state as well as possible by using a minimum number of "effector nodes"; these are selected before the activation process starts.We correct, complement, and extend previous work from the data mining community by a more thorough computational complexity analysis of Effectors, identifying both tractable and intractable cases. To this end, we also exploit a parameterization measuring the "degree of randomness" (the number of 'really' probabilistic arcs) which might prove useful for analyzing other probabilistic network diffusion problems as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.