The current state-of-the-art in control of cultivation processes for recombinant protein production is examined including the quantitative knowledge that can be activated for this purpose and the measurement techniques that can be employed for control at industrial manufacturing sites.
Recombinant proteins produced in Escherichia coli hosts may appear within the cells' cytoplasm in form of insoluble inclusion bodies (IB's) and/or as dissolved functional protein molecules. If no efficient refolding procedure is available, one is interested in obtaining as much product as possible in its soluble form. Here, we present a process engineering approach to maximizing the soluble target protein fraction. For that purpose, a dynamic process model was developed. Its essential kinetic component, the specific soluble product formation rate, if represented as a function of the specific growth rate and the culture temperature, depicts a clear maximum. Based on the dynamic model, optimal specific growth rate and temperature profiles for the fed-batch fermentation were determined. In the course of the study reported, the mass of desired soluble protein was increased by about 25%. At the same time, the formation of inclusion bodies was essentially avoided. As the optimal cultivation procedure is rather susceptible to distortions, control measures are necessary to guarantee that the real process can be kept on its desired path. This was possible with robust closed loop control. Experimental process validation revealed that, in this way, high dissolved product fractions could be obtained at an excellent batch-to-batch reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.