The application of modern machine learning to challenges in atomistic simulation is gaining attraction.
Reaction barriers are a crucial ingredient for first principles based computational retro-synthesis efforts as well as for comprehensive reactivity assessments throughout chemical compound space. While extensive databases of experimental results exist, modern quantum machine learning applications require atomistic details which can only be obtained from quantum chemistry protocols. For competing E2 and S N 2 reaction channels we report 4,466 transition state and 143,200 reactant complex geometries and energies at MP2/6-311G(d) and single point DF-LCCSD/cc-pVTZ level of theory, respectively, covering the chemical compound space spanned by the substituents NO2, CN, CH3, and NH2 and early halogens (F, Cl, Br) and hydrogen as nucleophiles and early halogens as leaving groups. Reactants are chosen such that the activation energy of the competing E2 and S N 2 reactions are of comparable magnitude. The correct concerted motion for each of the one-step reactions has been validated for all transition states. We demonstrate how quantum machine learning models can support data set extension, and discuss the distribution of key internal coordinates of the transition states.
The interplay of kinetics and thermodynamics governs reactive processes, and their control is key in synthesis efforts. While sophisticated numerical methods for studying equilibrium states have well advanced, quantitative predictions of kinetic behavior remain challenging. We introduce a reactant-to-barrier (R2B) machine learning model that rapidly and accurately infers activation energies and transition state geometries throughout the chemical compound space. R2B exhibits improving accuracy as training set sizes grow and requires as input solely the molecular graph of the reactant and the information of the reaction type. We provide numerical evidence for the applicability of R2B for two competing text-book reactions relevant to organic synthesis, E2 and S N 2, trained and tested on chemically diverse quantum data from the literature. After training on 1-1.8k examples, R2B predicts activation energies on average within less than 2.5 kcal/mol with respect to the coupled-cluster singles doubles reference within milliseconds. Principal component analysis of kernel matrices reveals the hierarchy of the multiple scales underpinning reactivity in chemical space: Nucleophiles and leaving groups, substituents, and pairwise substituent combinations correspond to systematic lowering of eigenvalues. Analysis of R2B based predictions of ∼11.5k E2 and S N 2 barriers in the gas-phase for previously undocumented reactants indicates that on average, E2 is favored in 75% of all cases and that S N 2 becomes likely for chlorine as nucleophile/leaving group and for substituents consisting of hydrogen or electron-withdrawing groups. Experimental reaction design from first principles is enabled due to R2B, which is demonstrated by the construction of decision trees. Numerical R2B based results for interatomic distances and angles of reactant and transition state geometries suggest that Hammond's postulate is applicable to S N 2, but not to E2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.