Quantum computing promises substantial speedups by exploiting quantum mechanical phenomena such as superposition and entanglement. Corresponding design methods require efficient means of representation and manipulation of quantum functionality. In the classical domain, decision diagrams have been successfully employed as a powerful alternative to straightforward means such as truth tables. This motivated extensive research on whether decision diagrams provide similar potential in the quantum domain-resulting in new types of decision diagrams capable of substantially reducing the complexity of representing quantum states and functionality. From an implementation perspective, many concepts and techniques from the classical domain can be re-used in order to implement decision diagrams packages for the quantum realm. However, new problems-namely how to efficiently handle complex numbersarise. In this work, we propose a solution to overcome these problems. Experimental evaluations confirm that this yields improvements of orders of magnitude in the runtime needed to create and to utilize these decision diagrams. The resulting implementation is publicly available as a quantum DD package at http://iic.jku.at/eda/research/quantum dd.
Quantum computers promise to solve important problems faster than conventional computers. However, unleashing this power has been challenging. In particular, design automation runs into (1) the probabilistic nature of quantum computation and (2) exponential requirements for computational resources on non-quantum hardware. In quantum circuit simulation, Decision Diagrams (DDs) have previously shown to reduce the required memory in many important cases by exploiting redundancies in the quantum state. In this paper, we show that this reduction can be amplified by exploiting the probabilistic nature of quantum computers to achieve even more compact representations. Specifically, we propose two new DD-based simulation strategies that approximate the quantum states to attain more compact representations, while, at the same time, allowing the user to control the resulting degradation in accuracy. We also analytically prove the effect of multiple approximations on the attained accuracy and empirically show that the resulting simulation scheme enables speed-ups up to several orders of magnitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.