The aim of this paper is to apply robust mechanisms-based material laws to the analysis of typical high-temperature power plant components during an idealized start-up, hold time and shut-down sequence under a moderate temperature gradient. Among others a robust constitutive model is discussed, which is able to reflect inelastic deformation, hardening/recovery, softening and damage processes at high temperature. The model is applied for a creep analysis of advanced 9–12%CrMoV heat resistant steels and calibrated in particular case against experimental data for 10%CrMoV steel type. For a steam temperature profile transient heat transfer analysis of an idealized steam turbine component is performed providing the temperature field. From the subsequent structural analysis with the inelastic constitutive model local stress and strain state variations are obtained. As an outcome a multi-axial thermo-mechanical fatigue (TMF) loading loop for one or several loading cycles can be generated. They serve as input for a fatigue life assessment based on the generalized damage accumulation rule, whose results come close to reality. In addition, the accuracy of a simplified method which allows a rapid estimation of notch stresses and strains using a notch assessment rule (NAR) [1] based on Neuber approach is examined.
Zur Auslegung von Bauteilen unter wechselnden Beanspruchungen werden häufig Lebensdaueranteilregeln verwendet, um eine Aussage über die erwartete Verformung zu treffen. Im Falle von Ofenkomponenten hat sich gezeigt, dass die Kriechverformung unter wechselnder Temperaturbeanspruchung bei niedrigen, konstanten mechanischen Lasten mit der Lebensdaueranteilregel stark unterschätzt wird. Temperaturwechsel scheinen einen sehr viel schädlicheren Einfluss zu haben, als bisher angenommen. Um die höhere Kriechverformung durch Temperaturwechselbeanspruchungen berechnen zu können, wurden verschiedene isotherme und anisotherme Kriechversuche durchgeführt und daraus ein Kriechmodell entwickelt. Gekoppelte Fluid-Struktur-Interaktions (FSI) Berechnungen auf Basis dieses Kriechmodells an einem typischen Ofenelement, einem metallischen P-Strahlheizrohr, wurden mit weiteren Versuchen validiert. Schlagwörter Kriechen, Temperaturwechsel, Strahlheizrohr, Fluid-Struktur-Interaktion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.