Unlike for subaerial settings, the impact of subaqueous relay ramps on sediment dispersal is still poorly understood. A combination of analogue laboratory experiments in a sandbox with numerical flow calculations is used to simulate relay ramp topographies on rifting continental margins and to analyse the resulting turbidity current pathways and their deposits. Various scenarios are investigated, including inflow perpendicular and oblique to the relay ramp axis as well as flow constrained by an incised channel on the ramp and by a landward‐directed tilt of the ramp. Without channelling, most sedimentation takes place on the basin floor because the bulk of the flow follows the steepest gradient down the fault and into the rift basin. With a channel along the relay ramp, significant flow occurs initially down the ramp axis, but channel spillover and basinward ramp tilting combine to redirect much of the sediment down the fault slope into the basin. When the relay ramp has a landward‐oriented tilt, most of the current flows down the ramp and deposits its sediment load there and at the foot of the ramp. However, also here a considerable amount of the flow is shed over the hanging wall fault and into the basin, forming a secondary depocentre, while ponding redistributes thin deposits over a wider area of the basin. The quantitative dependence of these results on the specific ramp geometries remains to be investigated further but may bear great importance for refined sedimentary models in subaqueous rifted settings as well as for hydrocarbon exploration therein.
Three-dimensional finite-element modeling was performed to investigate the response to fractures of the Formation MicroScanner (Mark of Schlumberger), which records high-resolution electrical scans of the borehole wall. It is found that the equation [Formula: see text] describes, over two orders of magnitude of resistivity contrasts between borehole mud and the formation, the relationship between fracture width W (in mm), formation sensitivity [Formula: see text], mud resistivity [Formula: see text], and the additional current flow A caused by the presence of the fracture. A is the additional current which can be injected into the formation divided by the voltage, integrated along a line perpendicular across the fracture trace. Coefficient c and exponent b are obtained numerically from forward modeling. Tool standoffs of up to 2.5 mm and fracture dips in the range from 0° to 40° were found to have an insignificant effect on the above relation. A three‐step approach to detect, trace,and quantify fractures is used. Potential fractures in Formation MicroScanner images are detected as locations where conductivity exceeds the local matrix conductivity by a statistically significant amount. Integration over a circular area is performed around these locations to gather all excessive currents; this integral is then geometrically reduced to approximate the line integral A. Line sharpening and neighborhood connectivity tests are done to trace the fractures, and apertures are computed for all fracture locations. Results from a well into basement in Moodus (Connecticut) show that the method successfully traces fractures seen on Formation MicroScanner images. The resulting fracture apertures range from 10 μm to 1 mm. For the wider fractures there is acceptable agreement with apertures obtained from Stoneley wave reflection measurements. This unique and novel technique for characterizing fractures in wellbores has a very low detection threshold of around 10 μm and resolves fractures as little as 1 cm apart. Furthermore, it provides azimuthal orientation of the fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.