The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include 'on the fly' new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this are presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM.
Figure 1: Screenshots of an interactive simulation scenario implemented with the Half-Life 2 engine. One user (left figure) is moving the skeleton's leg with a stick. AbstractThe increasing complexity and costs of surgical training and the constant development of new surgical procedures has made virtual surgical training an essential tool in medical education. Unfortunately, commercial tools are very expensive and have a small support base. Game engines offer unique advantages for the creation of highly interactive and collaborative environments. This paper examines the suitability of currently available game engines for developing applications for medical education and simulated surgical training. We formally evaluate a list of available game engines for stability, availability, the possibility of custom content creation and the interaction of multiple users via a network. Based on these criteria, three of the highest ranked engines are used for further case studies.We found that in general it is possible to easily create scenarios with custom medical models that can be cooperatively viewed and interacted with. Limitations in physical simulation capabilities make some engines unsuitable for fully interactive applications, but they can be used in combination with predefined animations. We show that overall game engines represent a good foundation for low cost virtual surgery applications and we discuss technologies which can be used to further extend their physical simulation capabilities.
Interpersonal coordination is a research topic that has attracted considerable attention this last decade both due to a theoretical shift from intra-individual to inter-individual processes and due to the development of new methods for recording and analyzing movements in ecological settings. Encompassing spatiotemporal behavioral matching, interpersonal coordination is considered as “social glue” due to its capacity to foster social bonding. However, the mechanisms underlying this effect are still unclear and recent findings suggest a complex picture. Goal-oriented joint action and spontaneous coordination are often conflated, making it difficult to disentangle the role of joint commitment from unconscious mutual attunement. Consequently, the goals of the present article are twofold: (1) to illustrate the rapid expansion of interpersonal coordination as a research topic and (2) to conduct a systematic review of spontaneous interpersonal coordination, summarizing its latest developments and current challenges this last decade. By applying Rapid Automatic Keyword Extraction and Latent Dirichlet Allocation algorithms, keywords were extracted from PubMed and Scopus databases revealing the large diversity of research topics associated with spontaneous interpersonal coordination. Using the same databases and the keywords “behavioral matching,” “interactional synchrony,” and “interpersonal coordination,” 1,213 articles were identified, extracted, and screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. A total of 19 articles were selected using the following inclusion criteria: (1) dynamic and spontaneous interactions between two unacquainted individuals (2) kinematic analyses, and (3) non-clinical and non-expert adult populations. The results of this systematic review stress the proliferation of various definitions and experimental paradigms that study perceptual and/or social influences on the emergence of spontaneous interpersonal coordination. As methods and indices used to quantify interpersonal coordination differ from one study to another, it becomes difficult to establish a coherent picture. This review highlights the need to reconsider interpersonal coordination not as the pinnacle of social interactions but as a complex dynamical process that requires cautious interpretation. An interdisciplinary approach is necessary for building bridges across scattered research fields through opening a dialogue between different theoretical frameworks and consequently provides a more ecological and holistic understanding of human social cognition.
This paper outlines the development of a sensory feedback device providing a tangible interface for controlling digital environments, in this example a flight simulator, where the intention for the device is that it is relatively low cost, versatile and intuitive. Gesture based input allows for a more immersive experience, so rather than making the user feel like they are controlling an aircraft the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand. The movements are designed to allow a sense of immersion that would be difficult to achieve with an alternative interface.A vibrotactile based haptic feedback is incorporated in the device to further enhance the connection between the user and the game environment by providing immediate confirmation of game events. When used for navigating an aircraft simulator, this device invites playful action and thrill. It bridges new territory on portable, low cost solutions for haptic devices in gaming contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.