Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods. We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N2H+ (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or ~2000 AU). Results. From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of ~0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions. Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers.
Young massive clusters (YMCs) with stellar masses of 10 4 -10 5 M and core stellar densities of 10 4 -10 5 stars per cubic pc are thought to be the "missing link" between open clusters and extreme extragalactic super star clusters and globular clusters. As such, studying the initial conditions of YMCs offers an opportunity to test cluster formation models across the full cluster mass range. G0.253 + 0.016 is an excellent candidate YMC progenitor. We make use of existing multi-wavelength data including recently available far-IR continuum (Herschel/Herschel Infrared Galactic Plane Survey) and mm spectral line (H 2 O Southern Galactic Plane Survey and Millimetre Astronomy Legacy Team 90 GHz Survey) data and present new, deep, multiple-filter, near-IR (Very Large Telescope/NACO) observations to study G0.253 + 0.016. These data show that G0.253 + 0.016 is a high-mass (1.3 × 10 5 M ), low-temperature (T dust ∼ 20 K), high-volume, and column density (n ∼ 8 × 10 4 cm −3 ; N H 2 ∼ 4 × 10 23 cm −2 ) molecular clump which is close to virial equilibrium (M dust ∼ M virial ) so is likely to be gravitationally bound. It is almost devoid of star formation and, thus, has exactly the properties expected for the initial conditions of a clump that may form an Arches-like massive cluster. We compare the properties of G0.253 + 0.016 to typical Galactic cluster-forming molecular clumps and find it is extreme, and possibly unique in the Galaxy. This uniqueness makes detailed studies of G0.253 + 0.016 extremely important for testing massive cluster formation models.
We use the Gaia DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter ∼75 pc long Tail. The true extent of Orion A is not the projected ∼40 pc but ∼90 pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio (∼30:1) and high column-density fraction (∼45%) make it similar to large-scale Milky Way filaments ("bones"), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.
Arising from: João Alves et al. Nature https://doi.org/10.1038/s41586-019-1874-z (2020)It has long been recognized that the gaseous and stellar components of the Milky Way and several other disk galaxies exhibit undulatory displacements ("corrugations") ranging from 1 to several kiloparsecs in wavelength and up to 350 parsecs in amplitude, and a variety of mechanisms, including gravitational instabilities, tidal interactions, collisions of high-velocity clouds, interaction of spiral density waves with the gaseous disk, and the undular mode of the Parker instability, have been proposed to account for these features 1,2 . Here it is suggested that the wavelike character of the recently discovered 3 2.7-kiloparsec spatially and kinematically coherent complex of interstellar clouds in the solar neighbourhood-the "Radcliffe Wave"may be the result of a Kelvin-Helmholtz instability (KHI) arising at the interface between the Galactic disk and non-corotating halo. Much like wind blowing over water, periodic waves will develop at the interface of fluids in relative motion 4,5 . Indeed, the fluid astronomical environment is ripe for KHI which has been shown to account for many and varied morphological and dynamical effects ranging in scale from comet tails to galaxies. The inferred oscillation about the Galactic midplane of the undulatory Radcliffe Wave is indicative of a wavegenerating origin.
We present a novel view on the morphology and dynamical state of ten prominent, nearby (≤ 500 pc), and young (∼30−300 Myr) open star clusters with Gaia DR2:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.