We demonstrate the self-assembled creation of a novel type of strain-free semiconductor quantum dot (QD) by local droplet etching (LDE) with Al to form nanoholes in AlGaAs or AlAs surfaces and subsequent filling with GaAs. Since the holes are filled with a precisely defined filling level, we achieve ultrauniform LDE QD ensembles with extremely narrow photoluminescence (PL) linewidth of less than 10 meV. The PL peaks agree with a slightly anisotropic parabolic potential. Small QDs reveal indications for transitions between electron and hole states with different quantization numbers. For large QDs, a very small fine-structure splitting is observed.
Scanning and transmission electron microscopy reveal that SiO x /Si layers can roll-up into microtubes and radial superlattices on a Si substrate. These hybrid objects are thermally stable up to 850 °C and emit light in the visible spectral range at room temperature. For tubes disengaged from the substrate surface, optically resonant emission with mode spacings inversely proportional to the tube diameter are observed and agree excellently with those obtained from Finite-Different-Time-Domain simulations. The resonant modes we record are strictly polarized along the tube axis.
We propose and realize a novel concept of a self-organized three-dimensional metamaterial with a plasma frequency in the visible regime. We utilize the concept of self-rolling strained layers to roll up InGaAs/GaAs/Ag multilayers with multiple rotations. The walls of the resulting tubes represent a radial superlattice with a tunable layer thickness ratio and lattice constant. We show that the plasma frequency of the radial superlattice can be tuned over a broad range in the visible and near infrared by changing the layer thickness ratio in good agreement with an effective metamaterial description. Finite difference time domain simulations reveal that the rolled-up radial superlattices can be used as hyperlenses in the visible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.