This paper focuses on the surface properties of a-C:H:Cu composite coatings for medical devices and how the release of Cu2+ ions from such coatings can be controlled. The released Cu ions have the potential to act as a bactericidal agent and inhibit bacterial colonization. A PVD–PECVD hybrid process was used to deposit a-C:H:Cu composite coatings onto Ti6Al4V substrates. We examine the layer surface properties using atomic force microscopy and static contact angle measurements. An increasing surface roughness and increasing contact angle of Ringer’s solution was measured with increasing copper mole fraction (XCu) in the coatings. The contact angle decreased when a supplementary bias voltage of −50 V was used during the a-C:H:Cu deposition. These findings are in line with earlier published results regarding these types of coatings. The release of Cu2+ ions from a-C:H:Cu coatings in Ringer’s solution was measured by anodic stripping voltammetry. Different layer structures were examined to control the time-resolved Cu release. It was found that the Cu release depends on the overall XCu in the a-C:H:Cu coatings and that an additional a-C:H barrier layer on top of the a-C:H:Cu layer effectively delays the release of Cu ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.