Whilst there is an increasing capability to instrument smart cities using fixed and mobile sensors to produce the big data to better understand and manage transportation use, there still exists a wide gap between the sustainability goals of smart cities, e.g., to promote less private car use at peak times, with respect to their ability to more dynamically support individualised shifts in multi-modal transportation use to help achieve such goals. We describe the development of the tripzoom system developed as part of the SUNSET—SUstainable social Network SErvices for Transport—project to research and develop a mobile and fixed traffic sensor system to help facilitate individual mobility shifts. Its main novelty was its ability to use mobile sensors to classify common multiple urban transportation modes, to generate information-rich individual and group mobility profiles and to couple this with the use of a targeted incentivised marketplace to gamify travel. This helps to promote mobility shifts towards achieving sustainability goals. This system was trialled in three European country cities operated as Living Labs over six months. Our main findings were that we were able to accomplish a level of behavioural shifts in travel behaviour. Hence, we have provided a proof-of-concept system that uses positive incentives to change individual travel behaviour.
An early warning system (EWS) is a core type of data driven Internet of Things (IoTs) system used for environment disaster risk and effect management. The potential benefits of using a semantic-type EWS include easier sensor and data source plug-and-play, simpler, richer, and more dynamic metadata-driven data analysis and easier service interoperability and orchestration. The challenges faced during practical deployments of semantic EWSs are the need for scalable time-sensitive data exchange and processing (especially involving heterogeneous data sources) and the need for resilience to changing ICT resource constraints in crisis zones. We present a novel IoT EWS system framework that addresses these challenges, based upon a multisemantic representation model. We use lightweight semantics for metadata to enhance rich sensor data acquisition. We use heavyweight semantics for top level W3C Web Ontology Language ontology models describing multileveled knowledge-bases and semantically driven decision support and workflow orchestration. This approach is validated through determining both system related metrics and a case study involving an advanced prototype system of the semantic EWS, integrated with a deployed EWS infrastructure.
Multi-Agent-Systems or MAS represent a powerful distributed computing model, enabling agents to cooperate and complete with each other and to exchange both semantic content and a semantic context to more automatically and accurately interpret the content. Many types of individual agent and MAS models have been proposed since the mid-1980s, but the majority of these have led to single developer homogeneous MAS systems. For over a decade, the FIPA standards activity has worked to produce public MAS specifications, acting as a key enabler to support interoperability, open service interaction, and to support heterogeneous development. The main characteristics of the FIPA model for MAS and an analysis of design, design choices and features of the model is presented. In addition, a comparison of the FIPA model for system interoperability versus those of other standards bodies is presented, along with a discussion of the current status of FIPA and future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.