BackgroundAlthough most respiratory tract infections (RTIs) are due to viral infections, they cause the majority of antibiotic (Abx) prescriptions in primary care. This systematic review summarises the evidence on the effectiveness of interventions in primary care aiming to reduce Abx prescriptions in patients ≥ 13 years for acute RTI.MethodsWe searched the databases “MEDLINE/PubMed” and “Cochrane Library” for the period from January 1, 2005, to August 31, 2016, for randomised controlled trials (RCTs) in primary care aiming at the reduction of Abx prescriptions for patients suffering from RTI. Out of 690 search results, 67 publications were retrieved and 17 RCTs were included. We assumed an absolute change of 10% as minimal important change.ResultsTwelve out of 17 included RCTs showed statistically significant lower Abx prescription rates in the intervention groups, but only six of them reported a clinically relevant reduction according to our definition. Communication skills training (CST) and point-of-care testing (POCT) were the most effective interventions. Pre-intervention Abx prescription rates varied between 13.5% and 80% and observed reductions ranged from 1.5 to 23.3%. Studies with post-intervention rates lower than 20% had no significant effects. Post-intervention observation periods ranged from 2 weeks up to 3.5 years. The design of the trials was heterogeneous precluding calculation of pooled effect size. The reporting of many RCTs was poor.ConclusionsCST and POCT alone or as adjunct can reduce antibiotic prescriptions for RTI. Eleven out of 17 trials were not successfully reducing Abx prescription rates according to our definition of minimal important change. However, five of them reported a statistically significant reduction. Trials with initially lower prescription rates were less likely to be successful. Future trials should investigate sustainability of intervention effects for a longer time period. The generalisability of findings was limited due to heterogeneous designs and outcome measures. Therefore, a consensus of designing and reporting of studies aiming at reducing antibiotic prescriptions is urgently needed to generate meaningful evidence.
a b s t r a c tWe measured and collected literature data for the crystal growth rate, u(T), of l-cordierite (2MgO Á 2Al 2 O 3 Á 5SiO 2 ) and diopside (CaO Á MgO Á 2SiO 2 ) in their isochemical glass forming melts. The data cover exceptionally wide temperature ranges, i.e. 800-1350°C for cordierite and 750-1378°C for diopside. The maximum of u(T) occurs at about 1250°C for both systems. A smooth shoulder is observed around 970°C for l-cordierite. Based on measured and collected viscosity data, we fitted u(T) using standard crystal growth models. For diopside, the experimental u(T) fits well to the 2D surface nucleation model and also to the screw dislocation growth mechanism. However, the screw dislocation model yields parameters of more significant physical meaning. For cordierite, these two models also describe the experimental growth rates. However, the best fittings of u(T) including the observed shoulder, were attained for a combined mechanism, assuming that the melt/crystal interface growing from screw dislocations is additionally roughened by superimposed 2D surface nucleation at large undercoolings, starting at a temperature around the shoulder. The good fittings indicate that viscosity can be used to assess the transport mechanism that determines crystal growth in these two systems, from the melting point T m down to about T g , with no sign of a breakdown of the Stokes-Einstein/Eyring equation.
The manufacture of sintered glasses and glass-ceramics, glass matrix composites, and glass-bounded ceramics or pastes is often affected by gas bubble formation. Against this background, we studied sintering and foaming of barium silicate glass powders used as SOFC sealants using different powder milling procedures. Sintering was measured by means of heating microscopy backed up by XPD, differential thermal analysis, vacuum hot extraction (VHE), and optical and electron microscopy. Foaming increased significantly as milling progressed. For moderately milled glass powders, subsequent storage in air could also promote foaming. Although the powder compacts were uniaxially pressed and sintered in air, the milling atmosphere significantly affected foaming. The strength of this effect increased in the order Ar ≈ N2 < air < CO2. Conformingly, VHE studies revealed that the pores of foamed samples predominantly encapsulated CO2, even for powders milled in Ar and N2. Results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. Foaming could be substantially reduced by milling in water and 10 wt% HCl.
We report the sintering of 3D‐printed composites of 13‐93 bioactive glass and hydroxyapatite (HAp) powders. The sintering process is characterized on conventionally produced powder compacts with varying HAp content. A numeric approximation of the densification kinetics is then obtained on the basis of Frenkel, Mackenzie–Shuttleworth, and Einstein–Roscoe models, and optimized sintering conditions for 3D‐printed structures are derived. Fully isotropic sintering of complex cellular composites is obtained by continuous heating to 750°C at a rate of 2 K/min for a HAp content of 40 wt%. The approach can readily be generalized for printing and sintering of similar glass‐ceramic composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.